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Introduction

In this work, we will consider valued fields, that is, fields which are
equipped with a mapping called a valuation. Any valuation v on a field
K induces a topology on K. This gives rise to a notion of “closeness”. Intu-
itively, we will say that two elements a,b € K are close to each other if the
value v(a — b) is large. This notion is then extended to polynomials in K [x]:
we say that two polynomials are close to each other if their coefficients next
to the respective powers of x are close to each other. This notion of closeness
comes from the topology induced by the Gauf§ extension of the valuation
from K to K[z]. With respect to that extension, the value of a polynomial
is defined to be the minimum of the values of the coefficients.

The basic principle of root continuity states that the closeness of poly-
nomials implies the closeness of their roots under a suitable pairing. This
result has been proved e.g. in sources such as |5] and [15]. Further stud-
ies have shown that we can say much more about the connections between
polynomials that are sufficiently close to each other. Moreover, the results
on continuity of roots find applications in numerous areas of mathematics.
One of the simplest applications is the result which states that the comple-
tion of a Henselian field is again Henselian (cf. Theorem 6.0.1), regardless
of the rank of the valuation. In [2], Brink employs theorems on continuity of
roots and continuity of factors of polynomials to present a general version of
Hensel’s Lemma. Theorem 32.20 from [15] employs a basic version of a root
continuity result to study the behavior of irreducible factors of polynomials
which are close to each other.

This dissertation aims to give a comprehensive overview of the results
from the literature, as well as to improve and build on those results. An
example of such an enhancement is Theorem 2.1.3 which is an improved
version of the basic results from [5] and [15]. The basic results say that given
any value ¢, if two monic polynomials f and ¢ are sufficiently close to each
other, then their roots can be paired in such a way that the value of their
difference is larger than . The improved result gives an explicit bound for the
value v(f — g) for which the aforementioned pairing of roots can be achieved.
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This result also states that, possibly under additional assumptions, several
invariants for f are the same as for g, including the degree, the minimal value
of the roots and the value

kras(f) = max{v(a — ) | a # o are roots of f}.

When f has only one root, we take kras(f) to be the value of that root.

The above theorem, along with other basic results such as those from |1],
[9] and [11], are presented in Chapter 2. In that chapter we also study other
approaches to stating and proving root continuity. One of those approaches
studies convergent nets of polynomials in Theorem 2.2.2 and Theorem 2.2.5.
In both theorems we assume that a polynomial f is a limit of a net (f;)icr,
where [ is a directed set. If we now choose a root 3; of f; for each ¢ € I,
then the net (5;);c; will contain a subnet convergent to some root of f.
Conversely, every root of f is a limit of a suitable net (/3;);e; of roots of the
converging polynomials.

Another approach to root continuity employs induction on the degree
of the polynomial (Section 2.3, Theorem 2.3.2). The idea of the inductive
method is as follows: consider two polynomials f and ¢ such that v(f — g)
is sufficiently large, and find roots « of f and S of g which are close to
each other. Then divide f by x — a and g by  — 8 and work with the
resulting polynomials in place of f and g. We then continue this method
inductively, until we end up at linear polynomials. As a result, we obtain
that there exists a pairing between the roots of f and g which are close to each
other. However, the inductive method causes the bound for v(f — g) to have
factorial growth with respect to the degree of f. This makes it a relatively
weak bound compared to the bounds in a number of other theorems given in
this dissertation.

The method of proving root continuity that will be studied most thor-
oughly in this dissertation involves the notion of Newton Polygons. In Chap-
ter 3 we will introduce this notion in full generality for points in the Cartesian
product R x I'. Here, I' is an extension of an ordered Abelian group defined
in Section 1.5, given by the Hahn product of sufficiently many copies of R.
Any ordered Abelian group can be embedded in a group of this form (see
Theorem 1.5.1). This provides the necessary generality when we work with
elements in the value group of a valued field which is in itself an ordered
Abelian group. We note, however, that for our purposes it is enough to work
with the divisible hull of the value group.

In Section 3.2, we will employ the previously introduced general notion
of a Newton Polygon to define the Newton Polygon of a polynomial. We give
a detailed proof of the known result which states that there is a one-to-one
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correspondence between the slopes of the Newton Polygon and the values of
roots of the polynomial (Theorem 3.2.2).

The results from Chapter 3 will be employed in Chapter 4 to study con-
nections between the Newton Polygons of polynomials f and g which are
close to each other. This is done in particular in Theorem 4.1.1 which states
that the respective Newton Polygons of f and g will coincide along a certain
real interval. The left end of this interval depends on the value v(f — g) and,
if 0 is a root of f, on the multiplicity of 0. The right end of this interval will
always be located at the degree of f. Note that in Theorem 4.1.1 we will
not assume that ¢ is monic nor that it is of the same degree as f. To our
knowledge, a result in this generality has not been stated in the literature yet.

Theorem 4.1.1 is then applied in Theorem 4.1.5 which tells us about how
many of the respective roots of f and g have value equal to a given value -,
and how many will have value greater than . This theorem gives more de-
tailed information than the results in |6]. Moreover, it can readily be adapted
to the case where f and g are polynomials over two different valued fields
whose respective value groups are contained in a common ordered Abelian
group. The aforementioned Theorem 4.1.5 is a result that can be seen as
continuity of values of roots. At the end of Section 4.1, we have a close look
at another statement that can also be understood as continuity of values,
and we disprove this statement (see Example 4.1.9).

The results from Section 4.1 are used in Section 4.2 to formulate root
continuity theorems. We state results known from literature, as well as their
alterations which can be applied in cases that require omitting some of the
assumptions of the original statements. As an example, Theorem 4.2.2 is a
result similar to one that can be found in [2]. Theorem 4.2.2 states that if the
value v(f — g) is large enough, then there exists a pairing between the roots
of f and g which are close to each other. The bound given in Theorem 4.2.2
is not as precise as the one given in the original result of [2]. However, unlike
that result, the theorem does not assume that the polynomials in question
are monic or of the same degree, nor that their coefficients are integral. This
theorem is then employed to prove Theorem 4.2.4 which is a generalization
of a result from [!]| (see Theorem 4.2.5). Under the same assumptions as
Theorem 4.2.2, it states that for each root « of f, the open ultrametric ball
with large enough radius and centered at « contains the same number of roots
of f and of g (counted with multiplicity). We also state results from [6] and
[7] and compare them with Theorem 4.2.2. While possibly using a stronger
bound for v(f — g), our theorem does not assume that the polynomials in
question are of the same degree. Moreover, the bound for the ultrametric
distance between a root « of f and a root § of g is stronger than the bound
given in |6] and [7] as soon as « is not a simple root of f. Finally, in Section



4.3 we study and aim to generalize results from [2].

In Chapter 5 we employ the root continuity theorems proved for polyno-
mials to formulate analogous results for roots and poles of rational functions.
To this end, we define an ultrametric on the rational function field which
does not come from a valuation. We then compare this ultrametric with
the one coming from the canonical extension of the Gauf valuation from the
polynomial ring to the rational function field.

Finally, in Chapter 6 we present applications of the root continuity theo-
rems from the previous chapters. There, we study relations between other
attributes of polynomials which are close to each other. For example, we
state connections between the irreducible factors of the polynomials and the
extensions generated by their roots. Such a statement can be found in Theo-
rem 6.1.3 which originates from [15], and in Theorem 6.2.5 which is a version
of Theorem 6.1.3 for polynomials that need not be separable. Both results
state that under a suitable pairing, the extensions generated by the roots of
the irreducible factors of the polynomials in question are isomorphic (either
over the ground field, or over its henselization), and that the splitting fields
of each pair of factors are the same. Moreover, we prove that polynomials
which are close to each other define extensions with the same ramification
theoretical invariants (Theorem 6.3.5).

A significant number of results from this dissertation has been included
in 3], a paper written by the author together with co-authors P. Szewczyk
and F.-V. Kuhlmann.



Chapter 1

Notation and background

In this dissertation, we will denote:

- by R the field of real numbers,

- by Q the field of rational numbers,

- by Z the ring of integers,

- by N the set of positive integers,

- by Ny the set of non-negative integers,
- by P the set of prime numbers,

- by [, the finite field with p elements for p € P.

1.1 Valuation-theoretical background

1.1.1 Basics of valuation theory

In this section, we will introduce the notation and facts on valuation
theory which will be used in the later parts of the dissertation. For further
background on valuation theory we refer the reader to sources such as [4],
[5], 19], and |11, Chapter 2|.

Let (K, +,-,0,1) be a field. Consider a mapping v from K to I'U{oo} for
some ordered Abelian group (I', +, <). Here, oo is the symbol for an element
greater than every element of I" that satisfies

o=x+oxw=7+00=00+7v forallyel.

We say that v is a valuation on K if for all a,b € K we have that
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(vl) v(a) =0 <= a=0,
(v2) v(a+b) > min{v(a),v(b)} (ultrametric triangle law),
(v3) v(a-b) =v(a)+ v(b).

We will then call (K,v) a valued field and the element v(a) € I' the value
of a. If no confusion arises, we will write va in place of v(a).

Denote K \ {0} by K*. From axiom (v3) we obtain that for all « € K
and n € N we have that v(a™) = nva, where nva is the n-fold sum of the
element va € I'. Moreover, vy = va—vbforalla € K, b € K*. In particular,
vl :v% =ovl —ovl =0and so v(a™') = —va foralla € K*. If ( € K is
such that ¢" = 1 for some n € N, then v(¢") = nv¢ = 0. Since I" is ordered
and thus contains no nontrivial torsion elements, we have that v{ = 0. In
particular, v(—1) = 0 and so v(—a) = v(—1) + va = va for all a € K.

Applying axiom (v2) inductively yields

n

v E a; | > min va;
— 1<i<n
1=

for alln € N and ay,...,a, € K.

This in particular implies that every natural number n, taken as the
element of K defined as the n-fold sum of 1, has a non-negative value under
any valuation on K. Indeed, vn = v(1+...41) > vl = 0. Since vn = v(—n),
also every integer in K has non-negative value.

We claim that if va < vb, then v(a+b) = va. Indeed, if we had v(a+b) >
va, then

va = v((a + b) — b) > min{v(a +b),vb} > va,

which gives us a contradiction.
Let (K, v) be an arbitrary valued field. We define
vK = u(K™).

Note that vK with the restictions of the operation + and the ordering < is
an ordered subgroup of the group I'. We will call it the value group of (K, v).

An integral domain R is called a valuation ring if for every a in the field
of fractions Quot(R) either a € R or a=! € R. Observe that the set

Ok :={a € K | va > 0}

is a valuation ring. It will be called the valuation ring of (K,v).
We define the set
My :={a e K|va>0}
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to be the valuation ideal of (K,v). Note that 9k is indeed an ideal of O.
Since Ok \ My is precisely the set of all units in Ok, we also have that M
is the unique maximal ideal of Ox. We may thus define the field

Kv .= OK/DRK

and call it the reside field of (K,v). The canonical epimorphism Oy — Kv
is called the residue map of (K,v). For a € Ok, the image a + My will be
denoted by av and called the residue of a. When considering polynomials
over K it will be useful to employ the following notation. For a polynomial

n

flx) = Zaixi € Oklz],

we will write
n

(fo)(z) =) (aw)a’ € (Kv)lz] (1.1)
i=0
and call it the reduction of f.

Let v; and vy be two valuations on K. We say that v; and vy are equivalent
if there is an order-preserving isomorphism ¢ : v; K — v K such that vea =
@(via) for all a € K*. Observe that valuation rings of equivalent valuations
are equal. If no confusion arises, from now on we will identify equivalent
valuations.

1.1.2 Examples

In this section, we introduce a number of examples of valued fields which
we will employ further in the dissertation. The value groups and residue
fields of the fields below are considered up to isomorphism.

Example 1.1.1. The simplest example of a valuation on K is the trivial
valuation. Here, we set v0 = oo and va = 0 for all @ € K*. In this
case, vk = {0} and Kv = K. Note that finite fields admit only the trivial
valuation, since every nonzero element a of such a field satisfies a™ = 1 for
some n € N.

Example 1.1.2. Another example that will be commonly used is the p-adic
valuation on Q. For p € P, we write every element ¢ € Q\ {0} as ¢ = p*- Z—,/,
where k € Z and o',V € Z are not divisible by p. We then set v (%) = k.

Here, we have that vQ = Z and Qv = .
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If we have a mapping v on an integral domain R which satisfies axioms
(v1)—(v3), we will also call v a valuation on R and the pair (R,v) a valued
ring. The valuation v can then be extended canonically to a valuation on the
field of fractions K := Quot(R) by setting

v (%) = va — vb.

In the previous example, it was possible to consider first the valuation v on
Z and then extend it canonically to Q to obtain the p-adic valuation on Q.

Example 1.1.3. Take an element ¢ transcendental over K and consider the

ring
K{t] = {Zaiti | n € Ny, a; GK}

i=0
We define

n

0# f(t) :Zaiti — ouf :=min{i € {0,...,n} | a; # 0}.

=0

We then extend the mapping v to the field K(¢) = Quot(K[t]) canonically.
This is called the t-adic valuation. We may further extend v to the field of
formal Laurent series

K((t)) :== {iaiti | N € Z, a; EK}

by setting

(Zat) :=min{i € Z | a; # 0}.
In this case, vK (t) = vK =Z and K(t)v=K((t))v =K.

Example 1.1.4. The most important example of a valuation for us will be
the Gauf valuation on the polynomial ring K[z]. Take a valued field (K, v)
and let = be an independent variable. We define a valuation on K|[x], which
we will once again denote by v, in the following manner:

n

v E a;x" | == min va;.
— 0<i<n
1=

This valuation is also extended canonically to the field K (x) = Quot(K[z]).
We then have that vK(z) = vK and K(z)v = Kv(av).
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1.2 Ultrametric spaces

Let X be a nonempty set and (7, <) a totally ordered set. We define
oo to be an element strictly greater than every element in 7. We say that
a mapping u : X X X — T is an ultrametric if the following conditions hold
forall a,b,c € X and t € T

(ul) u(a,b) =00 <= a=0b,

(u2) u(a,b) = u(b,a),

(u3) u(a,c) > min{u(a,b),u(b,c)} (ultrametric triangle law).
In this case, we say that the pair (X, u) is an ultrametric space.

Example 1.2.1. Let (K,v) be a valued field and set u(a,b) := v(a — b)
for a,b € K. Then (K,u) is an ultrametric space. However, not every
ultrametric comes from a valuation (see Example 5.1.3 and Corollary 5.1.4).

As was the case with valuations, in an ultrametric triangle at least two
sides are equal. In other words, if u(a,b) < u(b,c), then

u(a, c) = min{u(a, b), u(b,c)}.

We can prove this property in the same manner as the analogous property
for valuations.

Similarly to the case of valuations, we can also apply axiom (u3) in-
ductively to obtain that the ultrametric triangle law holds for more than
three points.

Definition 1.2.2. Let (X,u) be an ultrametric space, and let T be the
ordered set connected with this space. Take a € X, t € T. We define the set

Bi(a) :={be X | u(a,b) >t}

and call it the (closed) ultrametric ball of radius t centered at a.
Similarly, we define the set

Bi(a) :={be X | u(a,b) >t}
and call it the open ultrametric ball of radius t centered at a.

Take a,b,c € X, and t € T. Observe that for all a,c € B;(b) we have
that u(a,c) >t since

u(a,c) > min{u(a,b), u(b,c)} > t. (1.2)
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Moreover, we claim that if u(a,b) > ¢, then By(a) = Bf(b). In other
words, every element in an open ultrametric ball is the center of that ball.
Indeed, condition u(a,b) > t implies that a € Bp(b). If ¢ € By(b), then by
(1.2) we have that u(a,c) > t. This means that ¢ € Bj(a), which implies
that By (b) C By(a). The reverse inclusion is proved analogously.

Furthermore, two open ultrametric balls are either disjoint or comparable
by inclusion. Indeed, take t1,t, € T such that t; < t,. If ¢ € By (a) N By, (b),
then

u(a,b) > min{u(a, c),u(c,b)} > ti,

and so by what we have proved in the paragraph above, we obtain that
B; (a) = Bfl (b) g B;z (b)

The above arguments can be applied with “>” in place of “>" to obtain
analogous results for closed ultrametric balls.

1.3 Fields and field extensions

Take a field K and choose an algebraic closure K of K.

A polynomial f € Klz] will be called separable if it has only simple roots,
that is, roots of multiplicity 1. An element o € K will be called separable
over K if it is a root of a separable polynomial over K. Similarly, an algebraic
extension L|K will be called separable if each element in L is separable over
K. The set consisting of all elements in K separable over K is a field, called
the separable-algebraic closure, which we will denote by K*P. If an algebraic
extension L|K (or polynomial f or element «) is not separable, then we
will call it inseparable. If f only admits one root, then it will be called
purely inseparable. Similarly, L|K is purely inseparable if each element a € L
is a root of a purely inseparable polynomial over K. Observe that in our
notation, linear polynomials are both separable and purely inseparable.

Let L|K and F|K be algebraic extensions of K. We say that elements
Qait,...,0, € L are K-linearly independent if for every c¢q,...,c, € K, the

condition
n
E C;ity; = 0
i=1

implies that ¢; = 0 for 1 < ¢ < n. We say that L|K is linearly disjoint
from F|K if for every n € N and every choice of K-linearly independent
elements aq, ..., a, € L, these elements will also be F-linearly independent.
We will now show that this relation is symmetrical. Assume that L|K is
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linearly disjoint from F|K and suppose that there exist a4, ...,®, € L and
K-linearly independent elements i, ..., 3, € F such that

0(151 + ...+ anﬁn = 0. (13)

This means that the elements «; are not F-linearly independent, which by our
assumption implies that they are also not K-linearly independent. Without
loss of generality, we may assume that aq, ..., a,, are K-linearly independent
for some m < n and that there exist ¢;; € K such that

m
o; = E cija; form <i <n.
j=1

We combine the above equation with (1.3) to obtain

Z Oéjﬁj -+ Z < CijO(j) ,81 =0.
j=1 j=1

i=m+1

Reorganizing the terms, we obtain that

Z (,BJ + Z Cijﬁi) ;= 0.

j=1 i=m+1

The elements [3; were assumed to be K-linearly independent, therefore the
coefficient next to each element «; is nonzero. This means that the elements
Qai,...,0Q, are not F-linearly independent. On the other hand, they were
assumed to be K-linearly independent, which contradicts our assumption
that L|K is linearly disjoint from F|K.

We now see that L|K is linearly disjoint from F'|K if and only if F|K is
linearly disjoint from L|K. In view of this symmetry, we will say that in this
case L and F' are linearly disjoint over K.

Let L and F' be arbitrary algebraic extensions of K. We define the com-
positum of L and F' to be the smallest subfield of K that contains both L
and F' and we denote it by L.F.

Assume that the extension L|K is finite and consider a K-basis B of L,
that is, a maximal set of K-linearly independent elements in L. If L and F' are
K-linearly disjoint, then the elements of B remain F-linearly independent.
Hence, B is also an F-basis of L.F. This means that [L : K] = [L.F : F].
Note that this equality holds also if [L : K] is infinite.

Let L be a normal algebraic extension of K. That is, we assume that
every irreducible polynomial over K which has a root in L, splits into linear

7



factors in L. We will denote by Gal(L|K) the set of automorphisms of L
over K, that is, automorphisms which leave K elementwise fixed. Note that
we will be using this notation without assuming L|K to be separable. In the
particular case where L = K*P, we will write

Gal K := Gal(K*P|K).

If o € Gal L|K and « € L, then we will write o« in place of o(a).

Let L|K be an arbitrary field extension and a € L algebraic over K.
Let f € K[z] be the minimal polynomial of o over K, that is, f is a monic
and irreducible polynomial over K which admits « as a root. Then for all
o € Gal(L|K), o« is a root of f. Conversely, every root of f is of the form
oa for some o € Gal(L|K).

1.4 Valued field extensions

Let L|K be a field extension, where (L,w) and (K,v) are valued fields.
We say that w extends v (or w is an extension of v) from K to L if w|x = v.
In this case, we will also say that (L, w)|(K,v) is a valued field extension. We
will commonly use the symbol v for the valuation on both K and L, denoting
by (L|K,v) the respective valued field extension. The following theorem is a
consequence of Chevalley’s Extension Theorem (|5, Theorem 3.1.1|).

Theorem 1.4.1 (Theorem 3.1.2 from [5]). Let (K,v) be a valued field and
L|K any field extension. Then there exists an extension of v from K to L.

Consider a valued field extension (L|K,v). We will identify vK and Kv
with their natural embeddings in v and Lwv, respectively. In this sense, vK
is a subgroup of vL and Kwv is a subfield of L.

The ramification index of (L|K,v) is e(L|K,v) = (vL : vK), and the
inertia degree is f (L|K,v) := [Lv : Kv]. If e(L|K,v) =1 and f (L|K,v) =1,
then we say that the extension (L|K,v) is immediate.

It is a well-known fact (see e.g. |5, Corollary 3.2.3|) that if [L : K] < oo,
then also e(L|K,v) < oo, f (L|K,v) < oo, and

e(L|K,v) - f(L|K,v) < [L: K]. (1.4)

In Section 6.3, we will look into a more general form of the above inequality.

For our purposes, we will fix an algebraic closure K of K and extend
v from K to K. We will denote this extended valuation by v as well. We
then extend v once again to the valuation v on K(z) by means of the Gaufs
valuation from Example 1.1.4.



This extension will allow us to determine a correspondence between the
roots of a polynomial f and the roots of its reduction fv. Note that f € Ok,
as an element of K (z) if and only if f € Ok[z] as a polynomial over K. In
this case, the definition of fv in (1.1) coincides with the definition of the
residue of f as an element of the valued field K (x). Assume that f is a
monic polynomial in Og[x]. Then all the roots of f have non-negative value
(cf. Lemma 3.2.4). Since the residue map is a homomorphism from (’)~ ) to

K(z)v = Kv(zv), we have that

n n

f(@) =[] = @) = (fo)(@v) = [[(z0 - (aw)).

i=1 i=1

This means that for every root «; of f there is a corresponding root a;v of fuv.
Conversely, for every root ¢ of fuv, there is a root « of f such that av = (.

We claim that if (K,v) C (L,v) C (K,v), then vL/vK is a torsion group
and the extension Lv|Kv is algebraic. Indeed, take any element a € L, then
[K(a) : K] < oco. By (1.4), vK(a)/vK is a finite group, hence there exists
n € N such that nva € vK. Therefore, vL/vK is a torsion group. Similarly,
if @ € Op, then the extension K(a)v|Kwv is finite by (1.4). Hence, av is
algebraic over Kv, and so Lv|Kwv is algebraic.

We say that vK is divisible if for every a € vK and n € N there exists
b € G such that nb = a. Since vK is torsion-free, it admits a divisible
extension group. This group has the universal property that it admits a
unique embedding in every other divisible extension group, so it is unique up
to isomorphism. We will call it the divisible hull of vKK and denote it by vK.

We will now show that vK is the divisible hull of v/K and that Kwv is the
algebraic closure of Kv. By what we have shown above, vK /vK is torsion
and Kv|Kuv is algebraic.

Take any element vy € 17]/(, that is, ny € vK for some n € N. Take a € K
such that va = ny. Then for any b € K such that v" = a we have that
vb =1y, hence y e vK.

Similarly, take ( € Kv. Let f € Og[x] be any monic polynomial whose
reduction fov is the minimal polynomial of ¢ over Kv. Then there exists a
root b € Of such that by = C Therefore, C € K.

This shows that vK = vK and Kv = Ko.

In the further parts of this dissertation, we will commonly use expressions
such as “for every ¢ € vK large enough” and “there exists § € vK large
enough”. However, in some proofs and applications we may be specifying
elements ¢ and § which are in v/ and not necessarily in v K. ThlAposes no
threat to the generality of our theorems, since vK is cofinal in vK = vK.
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Hence, we may replace € € vK and § € vK with some elements vK > ¢’ > ¢
and vK 3¢ > 9.
In a similar vein, we will commonly use quotients % for § € vK and

n € N, working in vK , even if the value group vK which we are considering
is not divisible. N

A valued field (K,v) is called Henselian if the extension of v to K is
unique, or equivalently, if it satisfies the assertion of Hensel’s Lemma (see
e.g. [1, Corollary 16.6|, [5, Theorem 4.1.3]):

Lemma 1.4.2. Take f € Oklz|. If fv has a simple root ( € Kv, then f
admits a root o € Ok such that av = (.

Every valued field (K, v) admits a minimal algebraic extension in (K, v)
that satisfies Hensel’s Lemma. This extension is unique up to isomorphism
and is called the henselization of (K,v). We denote it by K" or (K,v)".

1.5 Abelian groups

1.5.1 Valued groups

Let (G,0,4) be an Abelian group and consider a nonempty ordered set
(T, <). Denote by oo an element strictly greater than every element in 7.
A map

v:G@3arvaeTU{oco}

is called a valuation if for all a,b € G,
(vl) va =00 <= a =0,
(v2) v(a —b) > min{va, vb}.

We call the pair (G,v) a valued group. We write vG := {va | a € G \ {0}}.
Observe that taking ¢ = 0 in (v2) and replacing b once by a and once by
—a, we obtain v(—a) > va > v(—a), hence va = v(—a), as was the case for
valued fields. This means that we can apply axiom (v2) inductively to obtain
that v(na) > va, where na denotes the n-fold sum of a for some n € N.

We will now assume that G is an ordered Abelian group, that is, we have
a total order < on G. For an element a € G we write |a| := max{a, —a}.

Two elements a,b € G are called Archimedean equivalent if there is some
n € N such that nja| > |b| and n|b| > |a|. As the name suggests, this is an
equivalence relation. For an element a, we denote by va the Archimedean
equivalence class of a. The set of all such equivalence classes can be ordered
in the following manner: va = vb if @ and b are Archimedean equivalent,
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and va < vb if b is Archimedean smaller than a, that is, |a| > |b] and a and
b are not Archimedean equivalent. Moreover, we define v0 := oo to be the
maximal element in the set of equivalence classes. Then the mapping a — va
is a valuation on G, called the natural valuation. The order type of vG is
called the principal rank of G. The group G is called Archimedean if the
natural valuation on G is trivial, that is, if the principal rank of G is 1.

1.5.2 Hahn products

Take a nonempty totally ordered set I and a family of Abelian groups
G, i € I. Consider the group G := [],.; G; with component-wise addition
and take a = (a;);er € G. We define the support of a to be the set

supp(a) :={i € I | a; # 0}.
Then the Hahn product is the set
H :=H;,;G; :={a € G | supp(a) is well-ordered} .

Observe that supp(a + b) C supp(a) Usupp(b). Thus if supp(a) and supp(b)
are well-ordered, then so is supp(a + b). This means that H is a subgroup of
G. We can define a valuation v on H as follows:

H\ {0} 3 a > va:=minsupp(a) € 1.

If in addition the groups G; are ordered, then we may define the lezico-
graphic order on H in the following manner: take a = (a;);c; € H, we then
say that a > 0 if a,, > 0. In this sense, H becomes an ordered Abelian
group. If all the groups G; are Archimedean, then the valuation on H co-
incides with the natural valuation from Section 1.5.1. On the other hand,
the following theorem (see e.g. |12, Chapter I, Sect. 5, Satz 3|) allows us to
identify an arbitrary ordered Abelian group with a subgroup of a suitable
Hahn product.

Theorem 1.5.1 (Hahn’s Embedding Theorem). Let G be an ordered Abelian
group and let v be the natural valuation on G. Then G can be embedded into
H;c.cR, where R is seen as the additive group of the real numbers.

1.6 The Taylor expansion

In this section we introduce the “characteristic blind” Taylor expansion for
polynomials. This means that it does not contain any denominators of natu-
ral numbers which in positive characteristic could be equal to 0. Throughout
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this section, we assume (K, v) to be an arbitrary valued field and we take

= i a;r' € K[z]
i=0

In this section, the valuation on K[z] will be the Gauf valuation, once again
denoted by v.

The Taylor expansion of f employs the notion of Hasse-Schmidt deriva-
tives, that is, the following expressions:

0,f(x) ::ZZ ]< )ﬂ z Za]H(ij)xj, 0<i<n (L5

The polynomials 0;f yield the following polynomial identity, which is
called the characteristic blind Taylor expansion for the polynomial f:

fle+y) = Z 0if(y (1.6)

0<i<n

Recall from Section 1.1.1 that the value of every integer is non-negative. By
the definition of the Gauf valuation, for every j € {0,...,n} we have that

j

218 f = mln va; > min va; > IDID va; = Uf

J ) = J
i<j<n 7 i<j<n 0<5<

Lemma 1.6.1. Take ¢ € K and a polynomial f € K|x] of degree n. Then
v(0;f(c)) > vf +min{0, (n —i)vc} for 0<i<n.

Proof. We will employ Equation (1.5). If ve > 0, then we have that

. J o .
v0; f(c) nin {UCLJ + v<i> + (J z)vc} i va; = 00, f

> of =vf+ min{0, (n —i)vc}.

If ve < 0, then we have that

v0if(c) = Zglgnn {vaj + v<‘z> +(j =i } > Zr<r§1<nnva] + (n —i)ve
= vO;f+ (n—1ive>vf+ (n—1i)ve=vf+ min{0, (n —i)vc}.
OJ
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Definition 1.6.2. For f € K[z] and ¢ € K, we set f.(z) := f(x + ¢).
Lemma 1.6.3. Take c € K. Given polynomials f,g € K|[z], we have that:
v(fe = ge) 2 v(f — g) + min{0, deg(f — g)vc}.

In particular, if f and g are monic polynomials of degree n, then
v(fe = ge) 2 v(f = g) + min{0, (n — 1)vc}.
Proof. Set h(x) := f(x) — g(x) and r := degh. Then from (1.6) we obtain:
v(fe—g.) =vh(x+c¢)=wv <0<Zi<r 8ih(c):1:i> = Orgiigv(@h(c)).
Now we use Lemma 1.6.1 to conclude:

min v(9;h(c)) > min (vh + min{0, (r — i)vc}) = vh + min{0, ruc}.

0<i<r 0<i<r

If deg g = deg f = n and both f and g are monic, then r < n — 1 and so the
above value is greater than or equal to vh + min{0, (n — 1)vc}. O
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Chapter 2

Overview and improvements

In this chapter we present a number of results on continuity of roots. To
the results from the literature that we cite in the dissertation we will also
present improvements, either by generalizing the original statement, or by
providing further results. Moreover, in Section 2.3 we present an additional
method of proving root continuity theorems.

In this chapter, (K, v) will be an arbitrary valued field. Unless specified
otherwise, the valuation on Klz] in this chapter and in all further
chapters will be the Gauff valuation, which we will once again de-
note by v. This means that polynomials f,g € K[z] are “close to each
other” if their coefficients are “close to each other”.

Throughout this dissertation, we will use the following notation for poly-
nomials f,g € K|[z]:

fl)y=Y"gairt =a, [[L,(z — ), o € K, a; € K,
(2.1)

gla) = S0 bt = b [ (x — B), Bi€K, b €K,

with m,n > 1.

2.1 Basic results

In this section we state results which represent the basic principle of root
continuity. We give possible bounds for the value v(f — g) which guarantee
that the roots of f and ¢ are sufficiently close to each other under a suitable
pairing. The following is a result which can be found in |15, Theorem 30.26]
and |5, Theorem 2.4.7|. This theorem will be a consequence of Theorem 2.1.3
below (as observed in Remark 2.1.4).
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Theorem 2.1.1. Let f be a separable monic polynomial. Then for every
€ € vK there exists 0 € vKK such that the following holds:

If g is a monic polynomial such that v(f—g) > 0, then deg g = deg f, and
for each root o of f there is a root B of g such that v(aw — B) > €. Moreover,
if € > kras(f), then the choice of ( is unique and g is separable.

The original version of the above theorem given in [15] has a slightly
different formulation. It states that for an arbitrary e, the choice of 5 such
that v(a — B) > ¢ is unique. However, this is not true for any ¢, as can be
seen in the following simple example.

Example 2.1.2. Consider K = Q with the 2-adic valuation v on Q, extended
to Q[z] through the Gaufs valuation. Take the polynomials

f(x) = g(z) = (= )z +1).

Choose ¢ = kras(f) = 1. We have v(f — ¢g) > 0 for any 6 € vK, but for the
root a :=1 of f, both roots f; := 1 and 5 := —1 of g satisfy:

va—p1) >e and v(a— ) >e.
Thus, the pairing between the roots of f and g is not unique.

We will now prove a theorem which provides more detailed information
than Theorem 2.1.1. For f € K[z] as in (2.1), we define:

Y(f) = min vag, y*(f) := min{y(f),0}. (2.2)

1<i<n
Recall from the Introduction that

kras(f) = {v(a — o) | a # o are roots of f}
if f has at least two distinct roots, and kras(f) = va if f has only one root a.

Theorem 2.1.3. Take monic polynomials f,g € K[x] and set

If € > 0, then the following assertions hold:

(a) degg = deg f,
(b) for each root 3 of g there is a root v of f such that v(a — ) > ¢,

(¢) for each root o of f there is a root B of g such that v(a — 5) > ¢,
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(d) v*(f) = 7v*(9), and if € > ~(f), then v(f) = v(g).

Moreover, if f is separable and ¢ > kras(f), then:

(e) the root o in assertion (b) and the root [ in assertion (c) are uniquely
determined,

(f) g is separable,

(g) for every root « of f the ultrametric ball B.(«) contains precisely one
root of f and precisely one root of g,

(h) kras(f) = kras(g).
Proof. Let f and g be given by (2.1). Since € > 0, we have that

o(f —g) =ne —ny"(f) > —ny"(f) > 0. (2.3)

Suppose that degg # deg f. Then g — f is a monic polynomial, thus v(f —
g) < 0, which contradicts (2.3). Therefore, we must have deg g = deg f and
we have proved assertion (a).

To prove assertion (b), suppose that there exists a root § of g such that
v(a; — ) < € for every i. Then

n

vf(B) = Zv(ﬂ — ) < ne. (2.4)

i=1

Assume first that v > 0. By Lemma 1.6.1 with ¢ = 0 applied to f — g we
have that

ne < ne —ny"(f) = v(f —g) < v(f(B) —9(B)) = vf(P),

which contradicts (2.4).
Assume now that v < 0. Again by Lemma 1.6.1, we obtain that vf(3) >
U(f - g) + n’U/B, S0

ne —ny* (f) =v(f — g) <vf(B) —nvp < ne — nvp. (2.5)
This implies that v5 < ~*(f). But this means that for all i we have that
vf < vay and therefore v(8 — a;) = vf3. Hence,
vf(B) =D v(B - a;) = nwp.
i=1
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Combining this with (2.5), we obtain that

o(f —g) <vf(B) —nvp =0,

which contradicts (2.3). This shows that assertion (b) holds.

Now we will show with the same methods that for every root « of f there
exists a root [ of g such that v(« — ) > €. Suppose there exists a root « of
f such that for every root 5 of g we have that v(«w — ) < e. Then

n

vg(a) = Zv(a — ) < ne. (2.6)

j=1
If vae > 0, then as before we apply Lemma 1.6.1 for ¢ = 0 to f — g to

obtain that ne < v(f—g) < v(f(a)—g(a)) = vg(a), which contradicts (2.6).
If vae < 0, then by Lemma 1.6.1, vg(a) — nva > v(f — g). Thus,

ne —ny*(f) = v(f — g) <wvgla) —nva < ne — nva,

whence va < v*(f) < ~v(f) = min; va; < va, a contradiction. This shows
that assertion (c) holds.

To prove assertion (d), assume first that ¢ > ~(f). Take k,¢ such that
vay = y(f) and vB = y(g). By part (c), there exists a root § of g such that

v(ag — B) > e >(f) = vay.

Thus v(f) = vay = vB > 7v(g). By part (b), there exists a root a of f such
that v(a — Bx) > €. Since € > (f) and va > 7(f), we have that

1(9) = vB > min{v(a = B),va} > y(f).

This shows that y(f) = ~v(g).

It remains to prove that v*(f) = 7*(g) always holds. If ¢ > ~(f), then
this is a consequence of the equality v(f) = v(g). Now assume that e < v(f);
this implies that v(f) > 0. Take S as above and use part (b) to find a root
a of f such that v(a — B;) > ¢ > 0. Since va > y(f) > 0, we obtain that
v(g) = vB > 0. Consequently, v*(f) =0 =~*(g).

Assume now that f is separable and € > kras(f). We know by assertion
(b) that for every root 3 of g there is a root a of f such that v(8 —a) > ¢.
Suppose that for some i # j we have that v(8 — ;) > ¢ and v(8 — «j) > e.
It follows that v(a; — ;) > € > kras(f) = max;»; v(o; — o), which is a
contradiction. This shows that « is uniquely determined, and we also see

18



that the ultrametric balls B.(q;), 1 < i < deg f, are pairwise disjoint. By
assertion (c), each of the deg f many balls B.(«a;) contains at least one root
of g. As deg f = degg, this root is uniquely determined and g is separable.
This proves parts (e), (f) and (g).

Take any two distinct roots i, and 3, of g. Let o; and «; be the distinct
roots of f such that g, € B.(«a;) and fy € B.(a;). Then v(oy; — ) > € >
v(a; — ;) and v(o; — Be) > € > v(a; — @), whence

v(Br — Be) = min{v(a; — Br),v(ay — Be), v(u — o))} = v(a; — a ).

Therefore, every value v(8), — ;) appears among the values v(a; — o). Since
for any distinct «; and a; we can also find g, and , as above, we see that
also every value v(o; — o) appears among the values v(S; — ;). This implies
that kras(f) = kras(g) and concludes the proof of our theorem. O

Remark 2.1.4. Observe that Theorem 2.1.3 implies Theorem 2.1.1. In-
deed, if we choose any € > 0, then by Theorem 2.1.3 for every polynomial ¢
such that

v(f —g) >0 :=ne—ny(f),

the claims of Theorem 2.1.1 are satisfied.

The three following lemmas can be found in varying forms in sources
such as |1] (3.4.1, Proposition 3.4.1/1), [9] (Lemma 5.8, Lemma 5.9) and [1]
(Lemma 1-3, Lemma 1-4). They present useful observations which will allow
us to prove more refined results on the continuity of roots throughout the
dissertation.

Lemma 2.1.5. If a is a root of a monic polynomial f € K|[x], then va > vf.
In particular, v*(f) > vf.

Proof. Since f is monic, we have that vf < 0, so the first claim is satisfied if
va > 0. Thus we may assume that va < 0. Write f as in (2.1) with a, = 1.
Since

nva =v(a") =v ( Z a1a> > Orélil<nn{votz + val,

0<i<n

we have that

> mi ; + 1 — > mi i >vf.
v > o%gln{wl + (i +1—n)va}t > in va; > vf
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In view of the above lemma, we can replace the term ~*(f) by vf in
the definition of ¢ in Theorem 2.1.3. This proves useful in case we have no
immediate knowledge of the roots of f. Indeed, vf is straightforward to
obtain. The value v*(f), on the other hand, requires computing the slopes
of the Newton Polygon NP (see Section 3.2 for more details).

Lemma 2.1.6. Let f,g € K|x] be polynomials of degree n > 1. Assume that
f is monic and take a root o of f. Then vg(a) > v(f —g) +nvf.

Proof. Write f(z), g(x) as in (2.1) with m = n, and choose a root a of f.
We apply Lemma 1.6.1 for ¢ = 0 together with Lemma 2.1.5 and the fact that
vf <0 to obtain that vg(a) > v(f — g) + min{0, nva} > v(f —g) +nvf. O

The following lemma is sometimes (e.g. in [1| and [11]) cited as a separate
result on the continuity of roots. It is a generalization of one of the results
given in Theorem 2.1.1, since we don’t require the polynomial g to be monic.
This lemma will be employed, directly or indirectly, to prove a number of
results (see e.g. Theorem 2.1.8, Theorem 2.2.2 and Theorem 2.3.2).

Lemma 2.1.7. Let f,g € K|x] be polynomials of degree n > 1, assume that
f is monic and let « be a root of f. If g is monic or v(f —g) > 0, then there
exists a root 8 of g such that

v(ﬁ—a)va+v<fn_g).

Proof. Write f and g as in (2.1) with m = n. We first claim that vb, = 0.
This is true if g is monic. If v(f — ¢g) > 0, then

0 <o(f —g) =min{v(a; = bi)} <v(1—bn),

which also implies that vb,, = 0. Suppose that for every root 5 of g we have:

U(B—a)<vf+v<fn_g).
Since vb,, = 0, we thus obtain that

vg(a) 2211(6,'—(1) <n-maxv(f; —a) <nvf+uo(f—g),

1<i<n
i=1
which contradicts Lemma 2.1.6. OJ
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The following theorem is a direct application of Lemma 2.1.7 and The-
orem 2.1.3. We employ the results and methods which were already in-
troduced, in order to formulate a root continuity theorem which does not
require the polynomials in question to be monic. We are, however, assuming
that they are of equal degree. Another price to pay for the generalization
is that the bound in the following theorem can be worse than the one in
Theorem 2.1.3.

Theorem 2.1.8. Let f € K[x] be as in (2.1) and take e > 0. If g € K|[x] is
a polynomial of degree n such that

v(f —g) > ne—nvf + (n+1)va,, (2.7)

then assertions (b)—(d) of Theorem 2.1.3 hold. Moreover, if f is separable
and ¢ > kras(f), then also assertions (e)—(h) of Theorem 2.1.3 hold.

Proof. Observe that Equation (2.7) is equivalent to:

via,'f —a,tg) > ne — nv(a,' f).

n

We will work with § := a;*¢g and with the monic polynomial f := ' f. Both
polynomials have the same roots as g and f respectively. Our assumption
can now be written as:

o(f —§) > ne —nuf > ne > 0.

Fix any root « of f From Lemma 2.1.7 we infer that there exists a root 8
of g such that
~ ulf—a o o
vl — B) zvf—kuzvf-i-s—vf:e.
n
This proves assertion (c) of Theorem 2.1.3.

Observe that v(1—a, 'b,) > v(f —g) > 0. This implies that v(a,'b,) = 0,
and so va, = vb,. Moreover, we see that v(f — g) > va,, which together
with vf < wa, implies that vf = vg. Working with b, !f and the monic
polynomial b, !g, our assumption now states that:

v(b, ' f = b, g) > ne —nv(b,'g).

Thus we can repeat the above method to prove part (b) of Theorem 2.1.3.
To prove the further assertions, we observe that the arguments for asser-
tions (d)—(h) in the proof of Theorem 2.1.3 do not use the assumption that
the polynomials in question are monic. Thus we can employ the now proved
assertions (b) and (c) and repeat the rest of the proof of Theorem 2.1.3. [
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2.2 Convergent nets of polynomials

A different approach to root continuity can be found in |[11]. Instead of
looking at a polynomial which is ‘close’ to a given polynomial, we consider
convergent nets of polynomials and study the behavior of their roots.

A directed set (I,<) is a partially ordered set such that for all 4,5 € I
there is k € I such that £ > 7 and k > 5. We call J C I cofinal in I if for
every i € I there is j € J such that j > i. Note that a cofinal subset of a
directed set is itself directed. Moreover, if I; is cofinal in I3 and I3 is cofinal
in I3, then I; is cofinal in I3.

A net in a set X is a function ¢ : I — X, where [ is a directed set; we
will denote it by (x;);cr. For Y C X, we say that (x;);cs is ultimately in Y if
there is some iy € I such that x; € Y for each ¢ € I with 7 > 4.

Now assume that X is a topological space. An element x € X is a [limit
of the net (x;);es if for every open neighborhood U, of x, (;);c; is ultimately
in U,. This fact shall be written as follows: (z;);c; — x. In this case we will
say that the net (z;);cs is convergent and that it converges to .

Finally, let I and J be directed sets. We say that (z;);e; is a subnet of
(x;)ier if J is a cofinal subset of I.

Lemma 2.2.1. Let I be a directed set such that I = I U...UI,. Then there
exists k € {1,...,n} such that I, is cofinal in I.

In particular, if under these assumptions (z;)ier is a net, then (x;)icr, S
a subnet.

Proof. If I is finite, it must have a largest element, which then must be in
some [, which proves the claim. Assume that [ is infinite. Suppose that for
every k € {1,...,n} there exists ji such that j, > Ij. Since I is directed,
there exists j € [ such that j > j; for every k. But then j > I for every k
and thus j > I, a contradiction. O

A particular case of convergence that will be considered in this disserta-
tion is given by the topology induced by a valuation v on a valued field or
ring X. In this setting, we have that (z;);e; — z if for all » € v.X there is
some iy € I such that v(xz; — x) > r for each i € I with i > 4.

The following result can be found in |11, Lemma 1-6].

Theorem 2.2.2. Let (K, v) be a valued field and let (I, <) be a directed set.
Consider a net (f;)icr of monic polynomials in K[z| of degree n. Moreover,
let f € Klz| be the limit of (f;)icr with respect to the valuation v, and for
any © € I choose a root B; of f;. Then there exists a root o of f and a cofinal
subset J C I such that (B;)jes — o
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Proof. Choose (f:)icr, Bi € K and f € K][z] as in the theorem. Note that
since (f;)ier — f, the set Iy := {i € I | v(f; — f) > 0} is cofinal in I. If we
find J cofinal in I which satisfies our claim, then J will also be cofinal in I.
We can therefore assume without loss of generality that v(f; — f) > 0 for all
i € 1. Since f is a limit of monic polynomials of degree n, it is itself a monic
polynomial of degree n. This fact combined with v(f; — f) > 0 shows that
vf =vfiforalliel.

Let ay,...,a, € K be all the (not necessarily distinct) roots of f. For
each k € {1,...,n} define:

J(ag) = {Z el |vlag—pi) > U(fnfz) Jrvf}.

By Lemma 2.1.7 we have that for each ¢ € I there exists k € {1,...,n} such
that i € J(ay), that is:

I'=J(a)U...UJ().

By Lemma 2.2.1 there exists a root « of f such that J(«) is cofinal in I. Set

J = J(a). Then (f;)jes is a net convergent to f, that is, for all r € vK

there is some jy € J such that v(f — f;) > r for each j € J with j > j.

Fix any element ¢ € v/K. We wish to show that, ultimately, v(a — ;) > €.

We know that there is some j; > jo such that v(f — f;) > ne —nuvf for each

j € J with j > ;. Thus for all j € J such that j > j; the following holds:
o(f = 1) ne —nuvf

n

U(a—ﬁj)ZTJrUfZ

+of =e.

O

The following corollary can be immediately deduced from Theorem 2.2.2.
However, it can also be proved by a direct application of Lemma 2.1.7, as
observed in [1, Sect. 3.4, Corollary 2.

Corollary 2.2.3. Consider a sequence (f;)ien of monic polynomials in K|x]
of degree n such that (f;)ien — f € K|x]. For any i € N choose a root f3;
of fi. Then the sequence (5;)ien contains a subsequence which converges to
a root of f.

Example 2.2.4. Since the choice of the respective roots ; is arbitrary, we
only have convergence up to a cofinal subset in Theorem 2.2.2 and a sub-
sequence in Corollary 2.2.3. Indeed, take I := N. Consider the polynomials
filz) = f(z) = (z — a1)(x — ag) with ag # ag, and set 5; = «a; for even i
and Bi = Q9 for odd 7. Then (Bi)iEI 7L> Qq and (/Bi)iel 7L> Q.
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From Theorem 2.2.2 we know that if (f;);c; — f, then any net of roots 5;
of f; contains a subnet convergent to some root «a of f. By directly applying
Theorem 2.1.3, we can find a converse result: any root a of f is obtained as
a limit of a suitable choice of (3;)ie;s.

Theorem 2.2.5. Let (I, <) be a directed set and assume that (f;)ies is a net
of monic polynomials in K[z] of degree n with limit f € K[z]. Choose a root
« of f. Then there exists a net (3;)ier of elements ofl? such that B; is a root
of fi for each i € I, and (3;)ic1 — a.

Proof. For each i € I we choose a root 3; of f; such that
v(a = i) = v(a =)

for every root 3] of f;. Fix any € € vK. Then there exists i € I such that
for all : € I, i > ig, we have that:

o(f = fi) > ne —=ny*(f).

By Theorem 2.1.3 (see also Remark 2.1.4) we have that there exists a root
Bi of f; such that v(a — ) > e. By our choice of 5; we also have that

U(O[ - 5l> Z g,
thus (ﬁi)ie] — Q. ]

Remark 2.2.6. In Chapter 4 we will state Theorem 4.2.5 which will allow
us to refine the result above. We assume that (f;);c; — f and we choose a
root « of f of multiplicity ¢. Then for every ¢ > kras(f) there exists ig € I
such that for every ¢ > 4, each of the polynomials f; has precisely ¢ many
roots in the open ultrametric ball BZ(«).

2.3 Induction on the degree of the polynomial

In this section we present a theorem whose essential feature is that its
proof employs induction on the degree of the polynomials. It serves as a
demonstration of what can be achieved through this method. The bound
for the value v(f — g) will be larger than the ones in Chapter 4, which
makes it a less optimal method than those which will be presented later in
the dissertation.

The method can be described as follows: first set

Ji=f and g :=g¢g
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and choose any root a; of f. Then use Lemma 2.1.7 to find a root p; of ¢
such that v(a; — 1) > €. Then set

fi g1
fo = and gy :=
r—ao r—
to repeat the procedure and continue the process until we arrive at linear
polynomials.

To prove the main theorem, we first need the following lemma.

Lemma 2.3.1. Take f,g € Kl[z| with f monic and let « be a root of f.
Assume that v(f — g) > 0 and that 5 is a root of g such that

MQ_QZUf+W£;@,
fhen fz)  gl) (f - 9)
T gl v —g
v(x—a_x—6>22vf+n'

Proof. Since (z — «)(x — ) is monic, we have that v((x — «)(z — 3)) < 0.
Therefore, we obtain that

ECED

r—a x—p0

) — o(f@)e— ) — gla
(

> min {v ((f(2) — g(x))z) ,v (f(2)8 — g(x)a) }
= min {o(f — g),v (f(2)B — g(x)a) }.
We wish to find a lower bound for v(f(z)3 — g(x)a). We use the assumption
of the lemma and the facts that vf < 0 and vf < va (since f is monic) to
obtain:
v (f(@)B = g(x)a) = v (f(2)(B —a)+ (f(z) —g(z))a)
> min {vf + v(f — @), v(f — g) +va}

2min{20f+v( _g),v(f—g)Jrvf}

n
B v(f —g)
=20f + =—=.

Going back to the initial inequality, we obtain that

NECRIEN S SRR PRI ) S

u(f—9)
0
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Theorem 2.3.2. Take polynomials f,g as in (2.1) and € > 0. Assume that
v(f—g)>nle—(n+ D (vf —va,) + vay,. (2.8)

Then there is an enumeration of the roots of g such that v(a; — B;) > € for
1< <n.

Proof. Condition (2.8) can be written in a simpler way, with f replaced by
the monic polynomial a, ' f:

v(a, f —a, g) > nle — (n+ 1) (va,* f).

Since f and a,'f have the same roots and the same is true for g and a,'g,
we may assume that f is monic. In this case, va, =0 and vf < 0.

We will proceed by reverse induction on the degree n of f as long as it is
larger than 1. We set f; := f and ¢; := ¢ and choose any root a; of f. We
use Lemma 2.1.7 to find a root f; of g such that

v(fi — g1)

v(g —B1) > Uf1+T >vfi+

= vof+(n—Dle—(n+1)(n—-lvf
(n—Dle—nlvf—((n—1)! = 1)vf >e,

nle —(n+ 1)vfi

where we have used that n —1>1and vf; =vf <0.
Now we assume that ¢ < n and that for 1 < 5 <4, we have already found
roots «;, ; such that v(a; — ;) > ¢, and polynomials f;, g; such that

deg fj =degg; =n—j+1,
as well as vf; > vf and
o(fj—g)) > (m—j+Dle—(n—7+2)vf. (2.9)
We define

i d Y9
and  gi41 ‘= -
T — & z — [

fiy1 =

Observe that
degfiH = deggiﬂ =n — (’L + 1) +1
and that vf; 11 > vf; > vf because v(x — a;) < 0. By Lemma 2.3.1 we have:

v(fi — gi)
i+1 — i > Wi+ —+
v(fir1 — gi+1) vf+n—z+1
> 2Uf+(n—i+1)!5—'(n—i+2)!vf
n—i+1

f+n—i)le—(n—i+2)(n—10)lvf
m—ile—(n—i+Dlvf—((n—17)! —2)vf.
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If i+ 1 < n, then
((n—i)l —2) >0

and we obtain that (2.9) also holds for j =i+ 1. If i + 1 = n, then
—(n—i+—=((n—0)!—=2)=-1,
thus

U(fo —gn) > —vf. (2.10)

Assume that i+1 < n. Then deg f;11 = deg g;11 > 1 and we have to continue
our induction. We choose a root a1 of f;11. Then by Lemma 2.1.7 there is
a root B;y1 of g;1q such that

UJit1 — i
v(aipr — Biy1) > v i+1+w

> vf+(n—i—Dle—(n—i+1)(n—i—1)lvf>e,

\Y

where we use that n —i — 1 > 1. This completes our induction step.

Finally, we deal with the case of i + 1 = n. Then both f;;; and g¢;1 are
linear polynomials, say, z—« and b, (z—/3). We set a,, :== av. In view of (2.10),
Lemma 2.1.7 shows the existence of a root (3, of g,,, which consequently must
be equal to (5, such that

U(an - Bn) Z Ufn + U(fn - gn) 2 €.

This completes the proof of our theorem. O
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Chapter 3

The Newton Polygon

3.1 Lines, segments and Newton Polygons of
certain finite sets

Let (I'g, +) be an ordered Abelian group, and let I be an ordered set such
that the order type of I equals the principal rank of I'y. From Section 1.5 we
know that I'y is isomorphic to a subgroup of the Hahn product I' := H;¢;R
endowed with the lexicographic order. We will identify I'y with its image
in I' and work with the group I' in place of I'y. In this manner, I' becomes
a vector space over R. For our purposes, however, it is sufficient to have a
vector space over Q. This is achieved by considering the divisible hull of T'y.

In what follows, we will be working with points in the Cartesian product
R x T, keeping in mind that all the notions and facts can also be formulated
when working with points in Q x T'y.

We will commonly use terms “left/right” to signify locations of points
with respect to the first coordinate, and “above/below” when speaking about
locations of points with respect to the second coordinate.

Consider two points pi,ps € Nog x I, with p; = (ki, ), ¢ = 1,2, and
k1 # ko. The line going through p1 and ps is the set

L(p1,p2) = {(z,7) € RXT | (k2 = k1)(v —m1) = (72 — 1) (x — k1) }.

Note that L(p;,p2) = L(p2,p1). Moreover, since k; # ko, we may define the
line using a linear function ¢ : R — I as follows:

(2N Y1 — V2
lx) = <k2_k1>x—|— (71+k2_k1k1>.

L(p1,p2) = {(z,¢(z)) e RxT'| z € R}.

Then
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The slope of L(p1,p2) is the slope of the corresponding function ¢, that
is,

s(0) == Zj — Zi

Assume that ky < ky. The segment connecting p1 and ps is the set
[p1, p2] = [p2, 1] = {(2, 0(z)) €E R XT [ k) <2 < o}

The slope of [p1, p2] is the slope of the corresponding line L(py, p2), which we
will denote by s[p1, ps).

From now on until the end of this section we consider a finite subset A
of points p; := (k;, ;) € Ng x I, 1 <4 < r such that k; < k;; for 1 <i <.
We will construct a subset ¢(A) C A inductively in the following manner.

In the first step, take i; := 1 and ¢1(A) = {p;,}. If r = 1, then we
set #(A) := ¢1(A) and finish the construction. Otherwise, we continue our
induction as follows.

Assume that we have already constructed the sets ¢1(A), ..., ¢;(A) and
indices 1, ...,1; for i; < r. We define

ij41 = max{i; < i <71 |s[py,,pi] <spi,p;] forall j e {i; +1,...,7}}.

In other words, we look at all the points p;, 7; < ¢ < r, such that the slope of
the segment [p;,, p;] is minimal, then among all such points we choose p;,,
to be the one with the largest index. We then set ¢;,1(A) := ¢;(A)U{pi,,, }.
If 741 < r, then we continue the induction.

Since the set A is finite, we will end up at i, = r for some s € N. In this
manner we obtain the set ¢(A) := ¢s(A) = {piy, ..., pi. }-

Define ¢; : R — T' to be the linear function corresponding to the line
going through p;, and p;,,,, 1 < j < s. Observe that £;(k;,,,) = lj11(ki,,,)-
Denote by oo an element greater than every element in I" and define the
function NP4 : R — I' U {oo} as follows:

0, ifx <k
NP4(x) := ¢ li(z), if ki, <a <k, forsomel<j<s,
00, if x > k,.

We will call this function the Newton Polygon of the set A. The graph of this
function is the set

G(NP 4, [k1, k) := {(2,NP4(2)) e Rx T | ky < z < k,}.
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In general, assume that there exist linear functions 1, .. ., §; and elements
1 < ... < T4y1 € R such that 0;(z41) = §j11(xjq) for 1 < j <t Ifa
function f is given by

f(x) =6;(x) if v; <2 < x5y, for some 1 < j <t

then we will say that f is piecewise linear on [x1,x11]. If f is piecewise
linear on every interval contained in its domain, then we say simply say that
f is piecewise linear. We thus see that NP 4 is a piecewise linear function on
[k1, k). Directly from the construction of NP4 we also obtain the following
proposition.

Proposition 3.1.1. The Newton Polygon of A has the following properties:
(a) the sequence of slopes s[p;;, pi;,.], 1 < j < s, is strictly increasing,

(b) each point in A lies on or above G(NP 4, [k1, k.]), that is, v; > NP 4(k;)
forallie{1,...,r},

(¢) ¢(A) is the smallest set among the subsets B C A such that NP, =
NPpg.

Take a convex set I C R and f: [ — I'. We say that f is upward convez
(on 1) if for any two points ¢,¢" € G(f, I) and for every point (z,v) € [q, ],
we have that v > f(z).

Proposition 3.1.2. The restriction of the function NPy to [ki, k] is an
upward convex function.

Proof. 1f both ¢ and ¢’ lie on one segment [p;,,p;,,,], then [q, ¢'] is contained
in that segment and the claim is satisfied. Thus assume that this is not the
case.

Denote by y and 3’ the first coordinate of ¢ and ¢/, respectively and
assume without loss of generality that y < . Denote by ¢ the linear function
corresponding to the line going through the points ¢ and ¢'.

By our assumption, ¢ € [p;,,p;,,,] and ¢’ € [p;,,, pi,..,] for some I, m with
1 <1l <m <r. Replacing [ with [ + 1 and m with m — 1 if necessary, we
may assume without loss of generality that ¢ # p;,,, and ¢’ # p;,,. Note that
after said replacement, we will still have that [ < m, since otherwise ¢ and ¢’
would lie on the same segment, which is a case that we excluded. Then the
slopes of the respective linear functions satisfy s(¢;) < s(d) < s(¢y,).

Denote by [y the largest index in {/, ..., m} such that s(¢,) < s(d). Then
lo + 1 is the smallest index in {/,...,m} such that s(¢;,41) > s(9). Take any
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point (z,d(x)) € [¢,q'] and assume without loss of generality that x # ¢ and
x # ¢'. We wish to show that 0(z) > NP 4(z).

Assume first that y < = < k fy<ao<k
lo =1), then

this happens e.g. if

Ug+1° IS (

6(z) = 0(y) + (. —y)s(d) = o(y) + (x — y)s(lr) = NPa(z).
then in particular, iy > [. Write

il0+1 )

z=max{j € {{l+1,...,lo} | ki, < x}.

= 0(y) + (z—y)s(l,)

> 6(y) + (ki —y)s(l) + ( Z (Kijr — k@-ﬁ(@)) + (7 — ki.)s(L.)
j=l+1

= NPA(.T)),

where the last equality follows from the fact that (y,0(y)) is a point on NP 4.
We will now prove in an analogous manner that d(z) > NP4(z) if k;, ,, <
z <. If in addition = > k; , then

im

0(x) =6(y) + (= —4)s(6) 2 0(y) + (z — y)s(lm) = NP a().

If k%H < x < k;,_,, then in particular, lp + 1 < m. Write
z:=min{j € {lo+2,...,m} | b, >z}
Then
o(x) = 0(y) + (z —y)s(d)
> 6(y) + (= y)s(lg+1)
> §5(y) + (ki,, — ')s(lm)
m—1
+ ( (kzg kz]“)s(gj)) + (v — ki.)s(C.1)
Jj=z
= NPA(.T)),
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Recall that we are considering the points p;,,...,pi, € ¢(A). If k;; > 0,
then we will consider an additional point

po = (ko,v0) == (0,00) € R x (I'U {o0}).

The vertices of NP 4 are the points pg, p;,, . . ., pi, if k; > 0 and the points
in ¢(A) otherwise. The face of NP, is any segment of the form [p;,,p;,. ]
and the set

[po, pir] := {(kir,v) ERXT |y >}
When referring to a set which is either a segment or a set of the above form
in a general setting, we will call it a generalized segment. The slope of a face
[pi; Di,.,] is the slope of the corresponding segment [p;;, p;;,,]. The slope of
the face [po, pi,] is defined to be —oo, where —co is a symbol for an element
strictly less than every element in I'. This slope can be intuitively understood
as a result of “calculating” the slope as we did in the case of segments:
Yip — 0
ki, — 0
Take 4,5 € {0,41,...,i5}, @ < j. The length of a face [p;,p;] is k; — k;. This
extended definition which possibly includes an additional point py will be put
to use in Section 3.2, where the set A will be defined using coefficients of a
given polynomial.

Similarly, we can define faces, slopes and vertices of any piecewise linear
function f. That is, a face of f is any generalized segment in the graph of
f, the slopes of f are the slopes of those segments, and a verter of f is any
point (z, f(z)) such that the slope of f changes at the coordinate .

We observe that the proof of Proposition 3.1.2 only assumes that the
function in question is a piecewise linear function on an interval whose slopes
are strictly increasing. Thus we obtain the following fact.

—00 =

Corollary 3.1.3. Let f be a piecewise linear function on an interval I and let
(@4, f(20)), (Tig1, [(wig1))], 1 <0 < t, be faces of f. Assume that x; < T
for 1 < ¢ < t and that the slopes of the faces are strictly increasing with 1.
Then f is an upward convex function.

The Newton Polygon also has the following property, which leads to it
being called the “convex hull” of A in some sources (see e.g. |3]).

Proposition 3.1.4. The function NP 4 is the largest upward convex function
on [k, k.| such that every point in A lies on or above its graph.

In other words, if f : [ki,k.] — T is any other upward convex function
with this property, then f(y) < NPa(y) for all y € [k, k,].

If we assume in addition that all the vertices of f are in A, then f = NPy
on the whole interval [ky, k,].
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Proof. Suppose that f(y) > NP,4(y) for some y € [ki,k,]. Then the point
(y, f(y)) lies strictly above some segment [p; ,p;;,,]. However, both p; and
Pi,., lie on or above the graph of f, that is, v;, > f(k;;) and v, > f(ki,,,).

Thus the point (y, f(y)) lies strictly above the segment
[(kijv f(kij))v (kij+17 f(kijJrl))]a

which means that f is not upward convex.

To prove the final assertion, we take f satisfying the assumptions of the
proposition. Observe that if (z, f(z)) is a vertex of f, then f(xz) = NP4(z).
Indeed, every point in A lies on or above the graph of NP4, and we have
that f(xz) < NP4(z).

Take any y € [kq, k.]. Once we show that f(y) > NP4(y), we will obtain
that f(y) = NP4(y) and the proof will be finished. The claim is satisfied if
(y, f(y)) is a vertex of f, thus assume otherwise. Let [p, p'] be the face of f
that contains (y, f(y)). On the one hand, p and p’ are points on the graph
of f and thus by the previous assertion of the proposition, p and p’ lie on or
below NP 4. On the other hand, p,p’ € A by assumption and every point of
A lies on or above the graph of NP 4. Therefore, p and p’ lie on the graph of
NP 4. By the upper convexity of NP 4, (y, f(y)) lies on or above the graph of
NPy, thus f(y) = NPa(y). O

3.2 The Newton Polygon of a polynomial

In this section, we will introduce the notion of Newton Polygons for poly-
nomials over a valued field (K, v). The group I' considered in the previous
section will thus be seen as a group containing vK, as in the definition of
a valuation given at the beginning of Section 1.1.1. In that section and in
Section 3.1, we have introduced the symbol oo for an element strictly greater
than every element in I'. It satisfies

=00+ =7+0=00+7 forallyel.

In Section 3.1 we have also introduced the symbol —oo for an element strictly
less than every element in I'. For an element € R\ {0}, we define

0, ifr>0 —o0, ifr>0
roo = _ r(—o0) := )
—o0, ifr<o, 00, if r <0.

Recall from Chapter 2.1 that the valuation v on K[z] that we are con-
sidering is the Gaufs valuation.
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Consider a monic polynomial f € KJz| given by (2.1), that is, a, = 1.
Observe that the coefficients are symmetric functions in the roots:

Unr = s, ..., ap) = (—1)* Z Qi+ ee e Qg

1<i1<..<ik<n

For a (not necessarily monic) polynomial f € K|xz] given by (2.1) we will
commonly use the following notation.

Notation 3.2.1. We enumerate the roots «; of f so that
va; < vag <L < va,.

We denote by 7, ...,7s the distinct values of roots of f, with v; < ;41 for
1 < ¢ < s. Moreover, we take 7 to be an arbitrary value in vK such that
Yo < 71- We define k; € Ny to be the number of roots of f of value strictly
greater than ~;, and j; € Ny to be the number of roots of f of value at most
Yis 0 S { S S.

We then have that
O0=Jo<i<...<Js-1<Js=n.

Moreover,
VO, 1 +1 = VO = VQ;, = 7y

for1 </<sand j,_1 <j<j.
Furthermore, we have that k&, = n — j,, and so

0=k, <kyq<...<k <ky=n.
Then the multiplicity of the value ~, is
me = Jo — Je—1 = ke—1 — ke.

We observe that s;,(aq,...,a,) is a sum of products of j, many roots of f.
Since vaj, < vay,41 for £ < s, the unique product of minimal value must be

Je

H Q5.

i=1
This shows that

'Uake:'l}Sje(Oll,...,Oén):U H o = Z V. (31)

1<i<je 1<i<je
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Therefore,

Je
vag, —vag,_, = E Vo; = My,
J=je—1+1
Consequently,
VA, — Vag,_, Vag,_, — vag,
Je— Je—1 ko1 — ke

The above equation remains true if va;, = oo, since vag, , < oo. In this
case we have that v, = oco.

By (3.2), the slope of the the generalized segment in R x (I" U {o0})
connecting the points (k;, vay,) and (ke—1,vag,_,) is equal to —v,. Thus we
will be able to compute the values of all roots of f and their multiplicities once
we are able to recognize the numbers k; from the values of the coefficients
of f.

First we observe that for 0 < ¢ < s, the slope —y, of the generalized
segment from the point (k;, va,) to the point (k,_y, vag,_,) is strictly smaller
than the slope —v,_1 of the next generalized segment. By Corollary 3.1.3,
the segments form the graph of an upward convex piecewise linear function
on the real interval [0,n] (if 0 is not a root of f) or on [ki,n] (if 0 is a root
of f).

Now we determine the location of the remaining points (k, vag). Assume
that k, < k < k¢_1, that is,

jg_lzn—k‘g_1<n—/{7<n—kg:jg.

Then the products of minimal value in Sn—k(ai,...,a,) are of the form
?";11 «; times a product of n — k — j,_; many roots of value ,. Hence,

from (3.2) we obtain:

var > vag,_, +n—k—ji_1)v
vag, + (ke—y — ko) (—e) + (k — ke—1)(—70)
= wvay, + (k— ko) (—0).

This shows that the point (k,vay) lies on or above the segment connecting
(ke, vag,) with (ke_1,vay, ) if vay, |, # oo, and that va, = oo otherwise.

We note that multiplying f with a nonzero leading coefficient a,, will
only shift the graph up or down by wa,, but will not change slopes nor roots.
Therefore, we obtain the values of an arbitrary polynomial of degree n in
exactly the same way as above.

We thus see that all points (i,va;), 0 < i < n, lie on or above the graph
of the function we have constructed. Write

A:={(,va;) |1 <i<nAa; #0}.
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By Proposition 3.1.4 and by part (c¢) of Proposition 3.1.1 we thus obtain:
The function described by the graph we have constructed is

NP4 = NP4y : R = T'U {0},

Since the points in ¢(A) are precisely the points such that the slope of NP 4
changes at their respective first coordinates, we have that

d(A) = {(ke,vag,) | 1 < <sAa #0}.

We will denote this function by NP;. We will refer to both G(NP) (as a
subset of R x I') and NP/ (as a function on R) as the Newton Polygon of f.

The points (ke, vag,) = (ke, NPs(k¢)) € R x (I'U {oo}), 0 < £ < s, are
the vertices of NPy, the generalized segments connecting the vertices are its
faces. For 0 < ¢ < s, the respective positive integers k,_; — k, are the length
of the face. In terms of these notions, we have shown:

Theorem 3.2.2. Take a polynomial f € Klz] as in (2.1). If the Newton
Polygon of f has a face of length k with slope —, then f has exactly k many
roots of value v (counted with multiplicity). In other words,

v(a;) = NPs(n —i) = NPg(n —i+1), (3.3)
with the convention oo — 00 := 00.

Example 3.2.3. Consider the field Q(v/2) with the 2-adic valuation v. Take
the polynomial

26 b xt a3 22

7

)=+ttt =t —=+
The Newton Polygon of f is represented by the blue graph in the following
picture:

e~ 8
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The vertices of NP are represented by the red dots on the graph and
are of the form (k;,vay,). Note that the corresponding function NP (k) has
value oo for 0 < k < 1 and for k£ > 7, and that NP is a piecewise linear
function on the real interval [1,7]. From Equation (3.3) we know that the
values of the roots of f are as follows:

vay = NP#(0) — NP¢(1) = 0o — (—2) = 00 = 73,
vag = NP;(1) = NP;(2) = =2 = (-23) = ; = 7,
vas = NP¢(3) — NP¢(2) = 0 = 73,
vay = NP¢(4) — NP¢(3) = 0 = 73,

vag = NP(5) = NPy(4) = =3 = 5,
VO = NPf(G) — NPf(5) =—-1= 1,
va; = NP¢(7) — NP#(6) = —1 = .

A simple application of Theorem 3.2.2 is given in the following lemma. It
can also be proved directly through the properties of the symmetric functions
(see |9, Lemma 5.6| for details). However, using the Newton Polygon allows
us to give simple, elementary proofs, and to give more detailed assertions.

Lemma 3.2.4. Let f € Klx] be a polynomial as in (2.1) such that va; <
vagy for 1 < i < n.

(a) If f is monic, then f € Oklx| if and only if all roots of f are integral.

(b) Suppose that among all coefficients of minimal value, a;, is the one
with smallest index, and a;, is the one with largest index. Then f has
lo many roots of positive value, Iy — ly roots of value 0 and n — Iy roots
of negative value.

(¢) Let ly and Iy be as in (b) and take lo <1 <1;. Then

n—I
va; — VA, = E vy,
i=1
and

Vg — va; = E V.

i=n—I[+1
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(d) For everyl € {1,...,n} we have that

VAy, — Vy—s . va; — vag
—max ———— <oy < — min ———,
1<i<n i 1<i<n i

and the minimum and mazximum are achieved for some roots of f.

(e) If ay is such that voy # voy for i # 1, then vay € vK. More generally,
if there are precisely t roots of f with value vay and if vK s t-divisible,
then vay € vK.

Proof. To prove part (a), take a monic polynomial f of degree n. Then

If f has only integral roots, then all the slopes of NP are non-positive,
hence NP () > 0 for 0 < i < n. Since the value of each coefficient of f lies
on or above NPy, we obtain that f has integral coefficients.

Conversely, assume that f has at least one root of negative value. Then
in particular, the rightmost slope of NPy is positive. Since NP(n) = 0, we
must have that NP;(i) < 0 for some 7 € {0,...,n — 1}, which implies that
at least one of the coefficients of f is not integral. This finishes the proof of
part (a).

Part (b) follows from the fact that all the slopes on the left side of the
coordinate [y are negative, along the interval [ly, [;] the slope is equal to zero,
and on the right side of [; the slopes are positive.

We will only prove the second inequality for I = [y of part (c), since
the remaining assertions are proved analogously. Note that by the previous
paragraph, a; is a vertex of NP4. We have that

vag —va; = NPp(0) = NP,(I) = > (NP(i—1) = NP;(i)) = Y«

i=1 i=n—I+1

We know that a root of maximal (resp. minimal) value corresponds to
the leftmost (resp. rightmost) slope of NP;. By construction, the leftmost
slope of NPy is equal to

Vag,_, — Vaop va; — vagy

— min -
ks_1 1<i<n 1

This means that the largest value that a root of f admits is precisely

. va; — vag
— mn ——.
1<i<n )
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We claim that the rightmost slope of NPy is of the form

Indeed, if there were a larger slope than the one on the left hand side, then
ai, would not be a vertex of NPy, contradiction. Since this is the largest
slope of NPy, it corresponds to the root of f whose value is minimal. This

value is equal to
Vay — Vg
— max ———.
1<i<n i
This proves part (d).
The assumption of part (e) means that the length of the slope which
corresponds to va; has length ¢, and thus there exists i € {0,...,s} such

that
VAL, . — VA,
val:% € vK.
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Chapter 4

Applications of the Newton
Polygon

Let (K,v) be an arbitrary valued field and f € KJz]. In the previous
chapter, we showed in Theorem 3.2.2 that if NP, has a face with slope
and multiplicity ¢, then f has precisely ¢ roots (counted with multiplicities)
of value —~. In this chapter, we will study connections between Newton
Polygons of polynomials which are sufficiently close to each other. We will
then employ Theorem 3.2.2 to formulate results on continuity of roots and
on values of roots.

In this chapter, when we speak of “the number of roots” of
a polynomial, we mean the number of roots counted with their
multiplicities.

4.1 Values of roots

As before, we assume that the integers k, and the slopes ~, for the poly-
nomial f € KJx] are defined as in Notation 3.2.1. The following theorem
gives us the main tool for studying connections between values of roots of
polynomials which are close to each other.

Theorem 4.1.1. Consider the polynomials f and g as in (2.1) with f monic
and m > n. Fiz some ¢ > 0, assume that v(f — g) > ne and that the set

{{e{l...;s} |7 <ce}

is nonempty. If (. is the mazimum of this set, then NP;(k) = NPy(k) for
k € {k’gg,...,n}.
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Proof. Fix any index ¢ € {0,...,¢.}. By (3.1) we have that

vag, = Z vy < jove. < mn-max{0,v,.} < ne.
1<i<je

Since v(ak, — by,) > v(f — g) > ne, it follows that vay, = vby,. As NP; is
upward convex, for k; < k < n we have that NP (k) < max{vay,,va,} < ne.
Since the point (k,vay) lies on or above the polygon, we have that va; >
NP;(k). Hence, vb, > min{vay, v(ar — by)} > min{NP;(k),ne} = NP;(k),
so that also the point (k,vby) lies on or above NP;. This shows that the
points (k¢, vbye) are vertices of NP,. Therefore, from k = &k, to k = n we
have that NP (k) = NP, (k).

O

The above theorem tells us that along a certain interval, the Newton
Polygons of the polynomials f and g have the same vertices and slopes. This
yields a connection between the values of the roots of f and g. To give more
details about this connection, we will require a number of lemmas.

Lemma 4.1.2. Take f,g as in (2.1) with f monic. If v(f — g) > 0, then
NP,(n) = NPy(n) = 0.

Proof. If v1 <0, then f and g satisfy the assumptions of Theorem 4.1.1 with
e = 0. Hence, NP;(n) = NP(n) = 0. Assume that 7; > 0. Since f is monic,
by part (a) of Lemma 3.2.4 we have that vay > 0 for all & € {0,...,n}.
Note that v(by — ax) > v(f —g) > 0, so we also have that vb, > 0 for all
ke€{0,...,m} and

0 = NPs(n) = va, = vb, > NP,4(n).

Let (4,vb;) and (j,vb;) be the vertices located on the left and on the right
end of the face of NP, that contains the point (n,NP,(n)). Then

NP, (n) > min{vb;, vb;} > 0.
Hence, NP4(n) = 0. O

The following picture illustrates the situation in Lemma 4.1.2. We see the
possible locations of the vertices on the ends of the face of NP, that contains
the point (n,NP,(n)), depending on the value ;. Note that for 43 > 0 we
must have that the point (j,vb;) = (n,vb,) is always a vertex of NP,. This
situation is studied in more detail in Lemma 4.1.4.

42



i, vb;)

" (J, vby)
(4,vb;) = (n,vby,) /vb (, vb
(1, vb;)

Lemma 4.1.3. Take f and g satisfying the assumptions of Theorem /.1.1.
Then all the slopes of NP, located on the left of the coordinate k. are strictly
smaller than —e. In particular, (kq,,vby, ) is a verter of NP,.

(7, vb (n,vby,)

Proof. By Theorem 4.1.1, NPy(k) = NPy (k) for k € {ky_,...,n}. We claim
that proving the first assertion will prove the second assertion. Indeed, the
slope located on the right of k,_ is equal to —~,,, whereas by the first assertion,
the slope located on the left of this coordinate is strictly smaller than —e <
—7.. This means that the point (k. ,NP, (k. )) is a vertex of NP,, which
then by definition must be equal to the point (ke,,vby, ).

Suppose that the face of NP, which is located on the left of the coordinate
k. has slope greater than or equal to —e. Let (k,vby) be the left vertex of
this face for some 0 < k < ky_.

Figure 4.1: The Newton Polygon of f (blue segments) and the supposed
Newton Polygon of g (red segments). The line going through the point
(k¢.,vay, ) with slope —¢ is drawn in green.

b <Y (kicy—ki)vit (ke.—k)e <> (kisi—ki)e+ (k. —k)e = (n—k)e < ne.



On the other hand, the supposed slope of NP, located to the left of the
coordinate k, is greater than or equal to —e, whereas the corresponding
slope of NPy is strictly smaller than —e. Since NP, (k, ) = NPs(ky ), this
means that

vb, = NPg(k) < pr(k) < vay.

As a result,

vby, = v(ag — b)) > v(f — g) > ne,

which gives us a contradiction.

Lemma 4.1.4. Take polynomials f and g as in (2.1), with f monic and
m > n. Take any ¢ > 0 and assume that v(f — g) > ne. If e > (1 = 2)7,
then all slopes of NP, along the interval [n,m] are strictly greater than —-.
In particular, if under these assumptions NPy and NP, coincide along some
interval [k,n] for k <n, then (n,vb,) is a vertex of NP,.

Proof. Assume without loss of generality that m > n since otherwise the
assertion holds trivially.

By Lemma 4.1.2, NPy(n) = 0. Since vb; > 0 for n < i < m, NP,
has positive slope along the interval [n,m]. Thus the assertion is proved if
~1 > 0, since in this case the corresponding slope —v; located on the left of
the coordinate n would be non-positive.

Assume now that 71 < 0 and that € > (1 — ™)y;. The assertions of the
lemma are satisfied if and only if for all ¢ € {n + 1,...,m} the point (i, vb;)
lies above the line going through the point (n, NP,(n)) with slope —v; (note
that by the upward convexity of NP, those points cannot lie below that line).
This in turn is equivalent to saying that for all ¢ > n the segment connecting
(n,NPy(n)) and (7, vb;) has slope strictly greater than —v;, that is,

vb; > NPy(n) — (1 — n)m. (4.1)
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Figure 4.2: The Newton Polygons of f (blue segments) and g; (red segments)
and the corresponding vertices. It visualizes how the condition vb; > (n—i)y;
is indeed equivalent to stating that g has precisely as many roots of value v, as
f. Compared to the condition vb; > (n — )7, the condition vb; > (n —m)y
presents a bound for vb; that is not dependent on 4, but possibly much larger.

By assumption and since NPy(n) < vb, = 0, we have that
vb; > v(f —g) >ne>(n—m)y > (n—1i)y1 > NPy(n) — (1 —n)m.
Therefore (4.1) holds, and so our lemma is proved. O

Consider the ultrametric space induced by the valuation v on K. Take
a € K and v € vK. Recall from Definition 1.2.2 that the open ultrametric
ball of radius v centered at a is the following set:

Bl(a):={be K |v(a—b) >~}

Y

Similarly, we define the set
Sy(a) :={be K |v(a—0b) =~}

and call it the ultrametric sphere of radius v centered at a.

We define ny(f, v, a) and ng(f, v, a) to be the number of roots of f (counted
with multiplicities) in B3(a) and S,(a), respectively. We will often con-
sider those numbers in the case where a = 0. For brevity, we will write

nb(fa ,Y) = nb(f7 Vs 0) and ns(fa /Y) = ns(ffyv 0) Then ns(fv ’Y) is the num-
ber of roots of f with value v, and n,(f,~) is the number of roots of f with

value strictly greater than ~.

Theorem 4.1.5. Let the polynomials f and g be as in Theorem J.1.1. Then:
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(a) ns(g,y) =ns(f,7) if n<y<eorify=ec.

(b) ns(g,71) > ns(f,71) and equality holds if and only if the point (n,vb,)

is a verter of NPg.

(c) np(g,7) =n(f,y) for i < v <e and ny(g,7v) > np(f,7) for v < m.

(d) ko, = np(f,ve.) = np(g,7e.) = n(g,e) = np(f,e). In particular, if

vy is chosen for g in the same manner as v, was chosen for f, then
€
£

Yo = Ve

(e) g has m — ki many roots of value < ;.

(f) g has m —n many roots of value < 7, if and only if the point (n,vb,)

is a verter of NPg.

Proof. By Theorem 4.1.1 we have that NP (k) = NP, (k) for k € {k;., ... ,n}.
This fact combined with Lemma 4.1.3 yields the following observations:

(i)

(iv)

Along the segment [k,_, k1], all the vertices and slopes of NP, are pre-
cisely the same as the respective vertices and slopes of NP.

All the slopes of both NP, and NP along the interval [0, k| are strictly
smaller than —e < —~,_. The slopes of NP, and NP/ located on the
right of the coordinate k,_ are greater than or equal to —~,,.

NP, has a face of slope —v; along the interval [k, k] for some n <
k" < m. This face contains the corresponding face of NP of slope —v;
which runs along the interval [ki,n]. The lengths of those two faces
are equal if and only if & = n. This happens if and only if the point
(n,vb,) is a vertex of NP,.

With £ as in (iii), all the slopes of NP, along the interval [k, m] are
strictly greater than —v;.

We will now combine those facts with Theorem 3.2.2.

Assertion (a) for 73 < v < ¢ follows from observations (i) and (ii). The
remaining case is 73 = v = € > 0 because by assumption, v; < €. Then in
particular € > (1 — ™)v;. We can thus use Lemma 4.1.4 to find that ' = n
for k" as in observation (iii). This finishes the proof of assertion (a).

We will now prove assertion (c). Note that n,(f,c) = ny(g,€) by obser-
vation (ii). For 71 < < e we have that ny(f,v) = n(f, €) + s ns(f5 %),
where [ = {2 < i < kg | v < v} is a (possibly empty) set of indices. By
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assertion (a), ns(f,v:) = ns(g,7:) for all i € I and ns(g,0) = 0 for each value
0 such that 73 < § < e and ¢ is not of the form ~; for some ¢ € I. Thus,

n(9,7) = m(9,2) + > _na(g,%) = m(f,€) + D no(f, ) = m(f, 7).

el il

For v < 71, we have that n,(f,v) =n < ny(g,7)-
Assertion (d) follows from (ii), assertion (b) follows from (iii), and asser-
tions (e) and (f) follow from (iii) and (iv). O

The above computations only need that for all i either va; = wvb; or
va;,vb; > ne. Thus the results can be generalized, as in [0], to the case
where f and ¢ are polynomials over two different valued fields with their
respective value groups contained in a common ordered Abelian group.

Corollary 4.1.6. Let the polynomials f and g satisfy the assumptions of
Theorem /J.1.1. Then ng(g,7vy) = ns(f,v) for all v such that v < v < € if
and only if (n,vb,) is a vertex of NP,. This holds in particular if m = n or,
more generally, if e > (1—="2)y1. Moreover, if m = n, then n,(g,v) = ns(f,7)
for all v < e.

Proof. The first assertion follows directly from parts (a) and (b) of Theorem
4.1.5. The particular case for ¢ > (1 — ™)y, holds by Lemma 4.1.4. Note
that for m = n this condition reads £ > 0, which was our original assumption
on €. If m = n, then by part (f) of Theorem 4.1.5 we have that ng(g,v) =

ns<f,’)/):0f01"}/<’71. 0

Note that by Theorem 4.1.5 there is a value-preserving bijection between
the respective multisets of roots of f and g whose values do not exceed ¢ (in
a multiset of roots of f, we take ¢ copies of « if a root « of f has multiplicity
t). However, when we speak of sets in the usual sense, the corresponding
value-preserving pairing may not even be a mapping. For example, a root of
multiplicity 2 may be sent to two distinct roots of multiplicity 1.

Observe further that for ¢ € K the map  — 2z — ¢ induces a bijection
between the roots of f and those of f. (as in Definition 1.6.2), and a bijection
between BS(c) and BS(0). Thus ny(f, 7, c) = ny(fe,7,0)-

Corollary 4.1.7. Take ¢ > 0 and ¢ € K. Let f,g € K[z] be two monic
polynomials of degree n. If

u(f —g) > ne — min{0, (n — 1)vc}, (4.2)
then ny(f,e,¢) = np(g, €, ¢).
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Proof. From the observation before the corollary we have that

ny(f,e,¢) = np(fe,6,0) and ny(g, e, c) = ny(ge, €, 0).
By Lemma 1.6.3 and by (4.2) we have that

v(fe—gc) > v(f —g) +min{0, (n — 1)ve} > ne.

By part (c) of Theorem 4.1.5, ny(fe,e,0) = np(ge, £,0), thus ny(f,e,¢) =
nb(ga &€, C)' O

Remark 4.1.8. Observe that the assumption ¢ > 0 already implies that
e > (1 — ")y if y1 > 0. Hence, this assumption is only relevant if v, < 0.

If we wish to have a bound that does not require computing the value of
a root of f, then we may use the fact that v; > vf (cf. Lemma 2.1.5), thus
(1—=")vf > (1 — ™). In this case, the condition in the above lemma can
be replaced by € > (1 — Z)vf.

Note that in the case where v, < 0, the bound for € depends also on the
degree of the polynomial g. We will now show that it is impossible to specify
a bound which is independent of m. Consider the field Q with the 2-adic
valuation v and the polynomial f(x) =1+ %x—i— %x2 +23. For j > 1 we define
g;(z) = f(x)+272773. Then the rightmost face of the Newton Polygons of f
and g; has slope 1. The length of that face is 1 for f and j + 1 for g;. This
means that f has one root of value v; = —1, whereas each g; has j + 1 roots
of value —1. However, v(f —g¢;) = j, which means that for every e € vQ = Z
there exists j such that v(f — g;) > ne, but f and g; do not have the same
number of roots of value ~;.

Figure 4.3: The Newton Polygons of f (blue segments) and g; (red segments)
and the corresponding vertices.

(J+3,7)

(1-1)(2,-1)

By Theorem 4.1.5 we have that some roots of polynomials which are close
to each other will have equal values under a suitable pairing. Consider the
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following situation: we fix the polynomial f of degree n and the corresponding
values «; as before. We then simultaneously consider all polynomials g of
degree m > n such that v(f — ¢g) > 0. We know that as soon as the value
v(f — g) passes the value n;, we have that ns(g,7v:) > ns(f,v). However,
Theorem 4.1.5 gives us no information on ng(g,v;) if 0 < v(f — g) < nv,.
One may hope that there is a result on the “continuity of values of roots™
if the value v(f — g) approaches ny; from below, then some roots of f and
g will have values which are getting closer and closer to each other under a
suitable pairing. However, this is not the case. The values of roots can be
arbitrarily far from each other as long as v(f — g) < ny;, only to suddenly
become equal once the value v(f — ¢) jumps above nv;. In fact, we can find
polynomials g; such that v(f — g;) = nv; and for every choice of roots o of
f and B; of g;, the set {|va — vf3;| | j > 1} will be cofinal in vK. This is
illustrated in the following example.

Example 4.1.9. Consider the field Q with the 2-adic valuation v and extend
v to Q(v/2). Take f(z) = 2 — 2, then both roots of f have value v; = 1.
Consider the polynomials g;(z) = 2> — 2%, where j is a positive integer. We

have that v(f — g;) = 1 = 27, but both roots of g; have value j.

Figure 4.4: The Newton Polygons of f (blue) and g; (red) for j = 1,2.

(0,4

4.2 Continuity of roots

In this section, we will present alterations of results found in [2], as well
as results from [6] and [7].
Krasner’s constant of an element o € K \ K is defined as follows:

krasg (o) = max{v(a — oa) | 0 € Gal K A oa # a}.
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Note that if « is a root of a separable polynomial f € K[x], then kras(f) >
krasg ().

The first theorem stated in this section is an application of the Newton
Polygon. Its formulation and proof are alterations of [2, Theorem 1]. At the
cost of modifying the bound given in [2], we are able to drop the assumptions
on the polynomials in question to be of the same degree, both monic and
separable, and to have integral coefficients. For the original formulation of
this theorem, see Section 4.3.

To prove the second part of the theorem, we will employ the following
version of Krasner’s Lemma (see e.g. |1, 16.8], [5, Theorem 4.1.7]).

Lemma 4.2.1. Let (K,v) be a Henselian valued field. Then for every el-
ement o € K the following holds: if 5 € K" \ K satisfies v(a — ) >
krasg («), then a € K ().

For a root ay of f we denote by t;, its multiplicity.

Theorem 4.2.2. Let (K,v) be a valued field and take f,g € K|x], written
as in (2.1) with f monic and m > n. Assume that for ¢ > max{0, kras(f)}
we have that

o(f = g) > ne —deg(f — g)7"(f). (4.3)
Then, after suitably rearranging indices, for every k € {1,...,n} we have
that U(O[k — ﬁk) > {ie.

If in addition (K,v) is Henselian and f and g are separable, then for each
k we have that K (o) C K(5k).

Proof. Choose aroot « of f and consider f,(z) := f(z+a), go(x) := g(z+a).
Denote by a; and b, the respective coefficients of f, and g,. We will now
prove a number of results on the Newton Polygons of f, and g,.

If v is aroot of f of multiplicity ¢ > 1, then 0 is a root of f, of multiplicity
t. Hence for 0 < i <t — 1 we have that NP (i) = va] = co. Moreover,

NPy (t) = wva; =v(sp—(lon — o, ..., — @)
= 0 (Dot 0 — ) (0, — ) (4.4)
= v ([les(es — a)) = jesv(a—a;) < (n—te,

where J C {1,...,n} is the set of all n — ¢ indices j such that a; # a. By
Lemma 1.6.3 we have that

V(fo — 9a) v(f — ¢) + min{0, deg(f — g)va}

>
> o(f —g)+deg(f —g)v*(f) > ne.
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Therefore, for 0 <i <t —1 we have that
NP, (i) = vb; = v(b; — a;) > v(fa — ga) > ne. (4.5)

Assume now that f is not purely inseparable. We apply Theorem 4.1.1
to the polynomials f, and g, and the value €. Using the notation of that
theorem, we see that v, = 0o > €. Since f has at least two distinct roots,
the property e > kras(f) implies that € > 7,_1. Hence /. = s — 1, and since
0 is a root of f, of multiplicity ¢, we have that k,. = ¢. As a result,

NPy, (i) = NP, (i) for t<i<n. (4.6)
For the time being, we write the indices of roots of ¢ in such a way that
v(fr—a)Zv(B—a) > ... 2 v(fn —a) (4.7)

Then B — «, ..., By — a are the t roots of g, whose value exceeds that of
the remaining roots of g,. This means that their values correspond to the
leftmost slopes of NP, . In particular, we have that

v(B —a) =NP, (t —1) — NP, (t). (4.8)
By Equation (4.6) with ¢ = ¢ and Equation (4.4) we have that
NP, (t) = NPy, (t) < (n —t)e. (4.9)

Taking Equation (4.5) with ¢ = ¢ — 1, we obtain that NP, (t — 1) > ne. We
combine this fact with Equations (4.8) and (4.9). As a result,

v(f —a) =NPy (t —1) = NP, (t) > ne — (n — t)e = te.

By our choice of indices, we must have that v(5; — «) > te for 1 < i < t.
Consider the set J = {j € {1,...,n} | a; = a} containing ¢ many elements.
We renumber the roots Sy, ..., 8; by the indices in J so that they are paired
with the roots a;, j € J. Then we have that v(5; — a;) > e for all j € J.
To the roots «;, 7 € J we have now assigned the corresponding roots
Bj. We claim that if we repeat this construction for another root o := oy,
[ ¢ J, then none of the so assigned roots 5, can be equal to 3; for any j € J.
Suppose that §; = §; for some j € J. Since ¢ > kras(f), we have that

v(aj — a) > min{v(o; — B;),v(a — B;)} > e > v(ej — ).

We have now shown that for every root o of f of multiplicity ¢ there exist
at least t roots of g which satisfy our claim. Moreover, the argument above
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yields that those roots of g cannot be assigned to a root distinct from «. We
can thus renumber the roots of g such that v(ay — fi) > ¢, assigning indices
from {n + 1,...,m} to the roots of g which were not chosen to be paired
with any root of f.

If f is purely inseparable, then we have that NPy, (i) = oo for i < n,
NPy (n) = 0. Recall from (4.5) with i = t—1 = n—1 that NP, (n—1) > ne.
Moreover, we have that v(0), —al,) > v(fa — ga) > 0, hence NPy (n) = vb), =
0. We write the indices 1,...,n of roots of g as in (4.7). Then

v(B, —ax) = NPy (n—1) — NP, (n) > ne.

Hence, also in the case where f is purely inseparable, we can renumber the
roots of ¢ in such a way that v(ay — fx) > € > kras(f).

To prove the last assertion, observe that the separability of f together
with the above property implies that v(ay — fg) > & > krasg (o). Hence by
Lemma 4.2.1, K(ay) € K(f) for each k. This finishes the proof. O

Remark 4.2.3. We claim that the above theorem remains true if we replace
“>" by “>” in condition (4.3) and the subsequent assertion, while also re-
placing “>” by “>” in the bound for e. We will have a closer look at the
proof of Theorem 4.2.2 and step by step consider the changes that the above
replacements yield.

In this case, the last inequality in (4.4) becomes strict, thus stating that

NP, (t) < (n — t)e

as long as n > t, that is, f is not purely inseparable. In the purely inseparable
case, both sides are equal to zero. The weak inequality that has now appeared
in condition (4.3) means that (4.5) now reads

V(fa — ga) > ne.

In particular, NPy (¢ — 1) > ne. The property ¢ > kras(f) implies that
€ > v,_1. We can thus still apply Theorem 4.1.1 by taking &’ := v, in place
of €, as long as f is not purely inseparable. Indeed,

V(fa — ga) > ne > ne'.
As a result, (4.6) remains true, that is,
NPy, (i) = NP, (i) for t<i<n.

In the purely inseparable case we do not have v,_;, but the above equality
still holds by Lemma 4.1.2 since t = n.
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We can once again renumber the indices of roots of g such that (4.8)
holds, that is,

v(fy —a) = NPy, (t — 1) — NP, ().

Assume that f is not purely inseparable. Since NPy, (t) < (n —t)e, (4.9)
now reads

NP, () = NP;.(t) < (n — t)e.

If f is purely inseparable, the above inequalities remain weak.
We can combine our observations analogously as we did in the proof of
the original theorem to obtain that for f not purely inseparable we have that

v(f —a) =NP, (t —1) — NP, (t) > ne — (n — t)e = te. (4.10)

Recall that we are assuming that ¢ > kras(f). We can thus use an analogous
argument to that given in the proof to show that for every root a of f of
multiplicity ¢ there exist at least ¢ roots of g which satisfy (4.10) and that
those roots of g cannot be assigned to a root distinct from «'. Thus, in the
case that f is not purely inseparable, the final assertion coincides with the
original assertion given in Theorem 4.2.2.

However, if f is purely inseparable, then we do not have strong inequali-
ties. Therefore we can pair up the (only) root ay of f with n many roots S
of g such that

v(ap — By) = NP, (n—1) — NP, (n) > ne.

This finishes our claim.

If we now assume that the inequality in the bound for € remains in its
original weak form, then for a given root oy of f we can still find a root S
of g such that

v(ak — 6k> Z tk&
However, we do not know whether 3, can be assigned to another root a; # ay,

of f. Hence, we do not know whether we can find an enumeration of roots
which are pairwise close to each other.

Note that by Theorem 4.2.2, each ball B2(a4) contains at least ¢, roots of
g. The following theorem gives us a more precise result for some roots of f.

'n fact, to prove that the ¢ many roots 3 cannot be assigned to a root distinct from o,
we only need that ¢ > kras(f). However, the condition ¢ > kras(f) is necessary to obtain
strong inequality in (4.4), which in turn gives us strong inequality in (4.10), without which
we could not prove the aforementioned assertion on § in the first place.
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Theorem 4.2.4. Take f,g € Klx], written as in (2.1) with f monic and
m > n. Assume that for e > max{0, kras(f)} we have that

o(f —g) >ne —deg(f — g)v"(f)

If vay, > v(f), then there are precisely ty many roots of g (counted with
multiplicity) in the ball B2 (o).

If in addition € > (1 —")y(f), then the same holds for any oy, such that
vay = Y(f). In this case, for n < k < m we have that vf) < y(f).

Proof. We employ Theorem 4.2.2 to find an enumeration of the roots of f
and ¢ such that v(ay — fx) > tre > €. In particular, every ball B2(ay)
has at least tx many roots of g. As in the previous proof, we find that
Bg(ak) N BS(OJJ') = Q) if (0 7é Q.

As in the construction of NPy, denote by 7; the values of roots of f in
increasing order, with -, being the largest. Since € > kras(f), we must have
that € > v5_1 > v = v(f) if f has at least two distinct values of roots, and
e >, = =7(f) if all roots of f have one value.

We will first assume that ¢ > (1 — ™)v(f) and prove the claim for any
root ay, of f. Since vay, > 71, the fact that v(ay — k) > € > 71 implies that
also vB > 1. By Lemma 4.1.4 combined with Theorem 3.2.2, we have that
all the roots §;, ¢ € {n + 1,...,m}, have value strictly less than ~;. This
means that there are precisely n roots of g which are eligible to be paired
up with roots of f. We combine this with our previous observation to obtain
that each ball B.(ay) contains precisely ¢, many roots of g.

Now take any root aj of f such that vay > 7. Since the condition
e > (1-") holds if 71 > 0, we may assume that v, < 0. Then v(ay—B;) >
€ > 0 implies that also v8; > ;. Since € > ~q, the assumptions of Theorem
4.1.1 are satisfied. In particular, NP, and NP, coincide along the interval
on which NP, assumes slope —v;, that is, the interval [ki,n]|. If we show
that on the left of the coordinate ki, NP, has slope strictly less than —~;, by
Theorem 3.2.2 we will have that f and g have the same number of roots of
value strictly greater than v;. We can then use the same argument as above
to conclude that each ball B.(«ay) contains precisely ¢, many roots of g.

Since there exists a root of f of value greater than v(f), f has at least
two distinct values of roots. We therefore must have that k; # 0. Suppose
that NP, continues on the left of the point (ki,vay,) with slope —v;. Let
(ig, vby), 19 < k1, be the vertex of NP, which represents the left end of the
face of NP, that has slope —v;. Then

’Ubio < NPf(Zo) S Vi, .
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Since v; < 0 and va,, = vb, = 0, this also means that vb;, < 0. But this
implies that

0 > vb;, = v(b, —a;y) > v(f —g) >0,

which gives us a contradiction. O

The following result was presented in [1] for complete normed fields (see
[1], Sect. 3.4, Proposition 1 and further results). In this dissertation, its
formulation has been adapted to work with valuations of arbitrary rank that
are not necessarily complete. The completeness of the field is only used in
[1] to obtain a unique extension of the norm from the field to its algebraic
closure. However, the statement remains true when considering any valued
field (K, v) and choosing any extension of v to an algebraic closure of K.
Instead of restating the original proof, we note that this theorem is a special
case of Theorem 4.2.4, where m = n. We are also able to specify a bound in
our assumptions, replacing the original epsilon-delta formulation.

Theorem 4.2.5. Take any monic polynomial f € K|x] of degree n > 1 and
let « be a root of f of multiplicity t. Choose an element ¢ € vK such that
e > max{0, kras(f)}. Assume that for a monic polynomial g € K[x] of degree
n we have that

v(f = g) > ne = (n =17 (f).

Then g has ezactly t many roots (counted with multiplicities) in B2(«).

Note that as was the case of Lemma 4.1.4, the bound for v(f —g) in The-
orems 4.2.2 and 4.2.4 depends on both f and g. Similarly to the observation
in Remark 4.1.8, this bound cannot be made independent of the polynomial
g. This is illustrated in the following example.

Example 4.2.6. We claim that there exists a monic polynomial f and poly-
nomials g;, j > 1, such that {v(f —g;) | 7 > 1} is cofinal in vK, but for any
value ¢ € vK and for any root « of f, the ball B2(«a) contains either no roots
of g; or all roots of g;. In particular, we will show that B2(a) contains no
roots of g; if ¢ > 0.

We consider the field Q with the 2-adic valuation v. We set f(z) = = — 3,
gi(z) = f(x) 4+ 2729, Then v(f — g;) = j. Note that all roots of g; have
value —1, same as the only root o = % of f.
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Figure 4.5: The Newton Polygons of f (blue segment) and g¢; (red segment)
and the corresponding vertices.

(J+1,9)

Fix any positive integer j and take g := g;. To look at the values v(% —5)
for any given root 3 of g, we will consider the polynomial g(z+1). The roots
of g(z + %) are of the form § — %, where (3 is any root of g. We compute:

1 1 j+1 J+1 ]+1 J+1
_ j _ -1, _. i

1=0

Observe that vby = —1 and vb;1 = j. We claim that for 1 <4 < j we have
that vb; > i — 1. Note that by =1+ (Jil), hence vb; > 0. For 1 <i < j we
have that

vb; = v ((‘7 j 1>2i—1> >v(27) =i—1

This means that NP o(@+d) contains precisely one face with slope 1, whose left
and right endpoints are (0,—1) and (5 + 1, ), respectively.
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Figure 4.6: An example of NPQ(H%) with j =5, that is, g(z + %) = 3225 +
962° + 1202 4 8023 + 302 + Tx + %

Hence for any root 5 of g we have that v(% — ) = —1. In particular, the
ball B9(%) contains precisely j + 1 roots of g if ¥ < —1 and it contains no
roots of g for v > —1.

Example 4.2.7. We will now show that the bound for v(f — ¢) in Theorem
4.2.2 is sharp if we take ¢ := max{0,kras(f)}. To this end, we will again
consider Q with the 2 adic valuation v and the polynomial f(x) =z — 3. It
has a single root o = 3 of value —1, so v*(f) = —1, kras(f) = —1 and 5 =0.
This time, we take g;(z) := f(x )+2]a:] for j € N. Then g¢; has the single root
B =, thus v(a— ) = —v(3) = 0. On the other hand, v(f —g) = v(2z) = 1
and therefore, ne — deg(f — g)7v*(f) = 1 = v(f — g). This proves that the
bound given in (4.3) is sharp.

By using the polynomials g; defined above we can construct examples with
polynomials that are arbitrarily close to f. We observe that v(f — g;) = J.
We fix an arbitrary j € N and set g := g; .

Similarly as in Example 4.2.6, we see that

g<x+;> —1:+Z<)2’ = ibx

Then vby = vby = 0, vb; = j, and vb; > 7 for 1 < ¢ < j. This means that
the Newton Polygon of g(z + %) has two faces: one with slope 0 and length
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1, and the other with slope ]]T1 and length j — 1. Hence, g(x + %) has one
root of value 0 and j — 1 roots of value —]JTI If B is any root of g(z), then

B —1isaroot of g(z + 3) and therefore, v(a — 3) = v(8 — 3) < 0. On the
other hand,

o(f—g)=j=n-0—7j-(=1) =ne—deg(f —g)7v(f)

This again shows that the strict inequality in (4.3) is necessary even when
the polynomials f and g are close to each other.

We now focus on a different approach to proving root continuity theorems,
which can be found in [6] and [7]. Similarly to Theorems 4.2.2 and 4.2.4, the
methods presented here allow us to improve the results given in Section 2.1.
To prove the following result, we will use the theory introduced in Section 3
in the particular case where deg f = degg.

Theorem 4.2.8. Take ¢ > 0, and two monic polynomials f,g € K[x] as in
(2.1) with m = n. Assume that

o(f = g) >ne = (n =1y (f)- (4.11)
Then, after suitably rearranging indices, v(o; — ;) > € for every i.
Proof. Choose roots o, ...q;, of f such that the balls BS (), ..., B2 (w,)
are disjoint. For each j € {1,...,¢} and v*(f) given by (2.2) we have that
ne — (n —1)y*(f) = ne — min{0, (n — 1)vay, }.

Combined with (4.11), this shows that condition (4.2) is satisfied. Thus by
Corollary 4.1.7 for ¢ = a;; we have that ny(f, e, a;,) = ny(g,€,a4,). We can
thus enumerate the roots of g by connecting them to the roots of f that are
in the same ball. O

Theorem 4.2.9. Take ¢ > 0, and two polynomials f,g € K[z| as in (2.1)
with m = n such that f is monic and v(f — g) > ne —nvf. Then there is an
enumeration of the roots of g such that v(a; — B;) > € for every 1.

Proof. Recall from Lemma 2.1.5 that vf < 4*(f). Assume that g = b,9o,
with gy a monic polynomial. We wish to show that
o(f = g0) > ne — (n—1)7v"(f).

Since f is monic, we have that vf < 0, hence v(f — ¢g) > ¢ > 0 implies
vf =wvg. Moreover, as in the proof of Lemma 2.1.7, we see that vb, = 0. We
compute, using the hypothesis of the theorem:

v(g=90) = v((bn = 1)go) = v(by — 1) +vg0 = v(f = g) + vgo
> ne —nvf +vg—ovb, =ne— (n—1)vf.
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As a result, we obtain that

v(f = g0) = min{o(f = g),v(9 = go)} > ne — (n— o f = ne — (n = 1)7"(f).

Applying Theorem 4.2.8 to f and gg in place of g yields the required result.
O

Remark 4.2.10. Note that if deg f = degg = n, then deg(f —g) <n — 1.
Hence under the additional assumption that ¢ > kras(f), Theorem 4.2.2
generalizes Theorem 4.2.8. Similarly, since v*(f) < vf < 0 and deg(f —g) <
n for f and g of degree n, with the same additional assumption our theorem
generalizes Theorem 4.2.9. However, the latter results are useful if v(f — g)
is a small positive value. Consider f(z) = 2? — 16 and g(z) = 2* — 4 in the
field Q with the 2-adic valuation. In this case, Theorem 4.2.2 does not work
since v(f — g) < kras(f), but taking € = 1 allows us to use Theorem 4.2.8.

4.3 The separant and the error function

In the previous section we have stated an alteration of |2, Theorem 1].
In this section we will have a look at this theorem, along with other selected
results from that source.

Let f € K[z] be a monic polynomial as in (2.1). The separant of f is the
following value:

S = max{v(f' () +v(a; —aj) | 1,5 € {1,....,n} Ni #j}.

We see that .y < oo if and only if f is separable. Thus the following theorem
implicitly assumes the separability of f. For comparison results between this
theorem and other results, see Remarks 4.3.2 and 4.3.3.

Theorem 4.3.1. Let (K,v) be a valued field and let f and g be two poly-
nomials in Og[z], written as in (2.1) with m > n. Assume that f is monic
and that v(f — g) > 5. Then, after a suitable renumbering of indices, we
have that v(ay, — Bi) > v(oy — o) for all j,k € {1,...,n} such that j # k.
Moreover, all the roots By, k € {1,...,n} are pairwise distinct.

If in addition (K,v) is Henselian and m = n, then for each k we have

Proof. Write N := {1,...,n} and fix k € N. Take o := « and consider
the polynomials f,(z) = f(z + @), ga(z) = g(x + «). Denote by a; and b,
the respective coefficients of f, and g,. Since 0 is a root of f,, we have that
NPy, (0) = vaj = oo. As in Equation (4.4) with ¢ = 1, we prove that

NP (1) = > v(a—a;)=vf(a). (4.12)

JEN.j#k
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Since f is monic and has integral coefficients, we have that va > 0 by part
(a) of Lemma 3.2.4, and so by Lemma 1.6.3, v(fo — ga) > v(f — g) > .
Therefore,

NP, (0) = vby = v(by — ag) > v(fa — ga) > 7. (4.13)

We will now prove that NPy, (1) = NP, (I) for l € N.

First, take [ > 0 such that (I,va;) is a vertex of NPy, . Consider the
sequence of all roots of f, (that is, elements of the form «; — «), ordered so
that their values are non-decreasing. Let the set I C N consist of the indices
i such that (o; — ) are the first n — [ elements in that sequence. Then by
(3.1) we have that va; = Y., v(a; — a). Since all roots of f are integral, for
all 7 we have that v(a; —a) > 0. Therefore,

va; = Zielv(ai —a) < ZjeN,j;ékU(a - aj)
max {0y i 001 = a0) + (o = ag) | i,j € N A
= max{vf () +v(a; —ay) |i,j € NNi#j} =S

IN

(4.14)
On the other hand, v(a; — b)) > .7}, thus va; = vb;.

Take now [ > 0 such that ([,va]) is not a vertex of NP; . Then va; >
NPy (I). Since f is separable, 0 is a simple root of f,. Hence, 1 and n
are respectively the first and the last coordinate at which NP is finite.
Thus both (1,va}) and (n,va,) are vertices of NPy . Therefore, we can
use inequality (4.14) for [ = 1 and [ = n to see that both va) and val,
have value at most .. Since NP, is upward convex, we must have that
NPy, (1) < max{va},va,} < .. We combine our observations to obtain

vb; > min{vay, v(a; — b))} > min{NP (1), %} = NP (I).

We have now shown that va; = vb] for [ such that (I,va)) is a vertex of
NPy, and that vb; > NPy, () for every other [.

Since v(fa — ga) > 0 and f, has integral roots, by Lemma 4.1.4, (n,vb))
is a vertex of NP, . Let £ > 1 be the minimal index such that (¢, vb)) is a
vertex of NP, . Then the Newton Polygons of f and g coincide along the
interval [¢,n]|. Therefore, if we show that ¢ =1, then

NPy (1) = NP, (I) for l € N. (4.15)
If n =1, then the claim is satisfied, thus assume that n > 1. Write
v = max{v(a; — a) | j € N,j # k}.
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Note that —v is the leftmost amongst the slopes of NP, which are not equal
to —oo. Define a function F' : [0,n] — I such that F(z) = NPy, (z) for
x > 1, and on the interval [0, 1], F' is given by the line going through the
point (1,NPy (1)) with slope —v. In other words, we continue on the left of
the point (1, NPy, (1)) with the same slope as we have approached this point
from the right. Note that F' is a piecewise linear upper convex function on
the interval [0, n].

We combine equations (4.12) and (4.13), together with the definition of
the separant, to obtain that

NPy, (0) > 75 = Iflgx{f'(ai) +o(ai —a;)} =2 NP (1) +v = F(0).

Recall that ¢ is the minimal index in N such that (¢,vb)) is a vertex of
NP,,.. Suppose, aiming for a contradiction, that £ # 1. The leftmost face of
NP, is given by a linear function connecting (0, NP, (0)) and (¢,NP,_(¢))
on [0, ¢]. Denote this function by J.

Figure 4.7: The Newton Polygons of f, (blue segments) and g, (red seg-
ments), together with the function F which coincides with NP, along [1,n]
and is given by the dashed blue segment along [0, 1]. The leftmost face of
NP, is given by the linear function 4. The blue points correspond to the
points (7, va}), the red points represent (i, vb;), and the black points are lo-
cated in places where the two of the above coincide.

(0, NPy, (0))
(0, F(0)) a_

We have that
F(¢) = NPy, (¢) = NP, (¢) =4(¢) and F(0)<4(0).

Since F' is upward convex and ¢ is linear, for all x € [0,¢) we have that
F(x) < é(x). Since NPy, (0) = oo and NPy (1) # oo, (1,va}) is a vertex of
NPy, and thus by what we have shown, va} = vb}. Hence also the point

(1, F(1)) = (1,NPy, (1)) = (1,va}) = (1, 0b})
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lies strictly below the function 6. But ¢ was a function defining the face
of NP, on the real interval [0,¢]. As a result, (1,vd]) lies below NP
contradiction. This proves that £ = 1 and so (4.15) holds.

Recall that we are considering the root o = a4 of f. For the time being,
we write the indices of roots of g in such a way that

v(Br — ) > v(Bi — )

Gar

for all i € {1,...,m}. Then f; — « is a root of g, with maximal value, thus
v(Br —a) = NP, (0) — NP, (1).
As a result, we obtain that
v(By — ) = NPy (0) = NPy (1) > . — vf'(ay) > v(ay — o) for all j # k,
where the first inequality follows from (4.12), (4.13) and the fact that
NP, (1) = NPy (1).
We have thus shown that for a; there exists a root [ such that
v(Br — ag) > v(ay, — ;) for all j, k € N such that j # k. (4.16)

We claim that if we repeat this construction for another root o; with [ # k,
then the resulting paired root §; will not be equal to 5. Indeed, suppose
that 8, = ;. Then

v(ag — o) > min{v(oy, — Bi),v(or — Br)} > vl — au),

a contradiction. We have that for every «4 there exists a root [, which
satisfies our claim. Moreover, this root (5, cannot be assigned to a root
different from ay. We can thus renumber the roots of g such that v(ay —
Br) > v(ay —a;) for all k,j € {1,...,n} with j # k, assigning indices from
{n+1,...,m} to the roots of g which were not chosen to be paired with
any root of f. Since f is separable, also the roots fy,..., 3, of g must be
pairwise distinct.

Assume now that m = n and that K is Henselian. Since f has now
precisely as many roots as g, the choice of the root §j for ay is unique. As
a result, the claim (4.16) does not hold for any root 5, [ # k. Hence, there
exists an index j # k such that

v(ag — B1) < vlo —ay) < v(o — Br).

62



Consequently,

V(B — B1) = min{v(ay — Bi), v(aw — Bi)} = v(ow — Br) < v(ax — Br).
Thus for each k we have that

U(Oék — ﬁk) > kI'a,SK(Oék> and v(ak — ﬁk) > kraSK(ﬁk).

The last assertion of the theorem then follows from Lemma 4.2.1.
O

Remark 4.3.2. The original formulation of the above theorem in [2| does
not explicitly state that v(ay, — fr) > v(oy — ;) for every k,5 € {1,...,n},
k # j. Instead, it assumes that K is Henselian and that m = n, claiming
that K(«;) = K(B;) for every i. As was the case for Theorem 4.2.2, we do
not need Henselianity to prove that the respective roots are close to each
other. Thus the formulation of the above theorem gives us slightly more
information than the one given in |2].

Remark 4.3.3. We note that the formulation and the proof of Theorem 4.3.1
are similar to those of Theorem 4.2.2. However, in their current forms, neither
is a generalization of the other. Indeed, on the one hand, the bound .#% is
more precise than the one given in (4.3). On the other hand, Theorem 4.3.1
assumes that the polynomials in question have integral coefficients and that
f is separable (which is hidden in the assumption that .y # co). In order
to be able to consider polynomials that need not have integral coefficients
and still be able to apply Lemma 1.6.3, we need to consider the additional
value deg(f — g)v*(f) in the bound for v(f — g). This justifies the summand
deg(f — g)v*(f) in (4.3). Note that the separant .y is a sum of n many
summands, each of which is of the form v(o; — o) for some ¢, j (cf. (4.14)).
In the definition of ¢ in Theorem 4.2.2, each of those summands is replaced
by the maximal value, that is, kras(f). Accounting again for the possible
negative value of some roots, we then take ¢ > max{0, kras(f)}. While this
replacement seems minor at first, it is necessary to be able to employ Theorem
4.1.1 in the proof of Theorem 4.2.2, which required that v(f, — go) > ne.
Proving that the Newton Polygons of f and g coincide was thus more involved
in the proof of Theorem 4.3.1 specifically for the reason that the bound .
is more precise than the bound given in (4.3).

For the next result, we will employ the following notion.

Let I be an ordered set such that the order type of I equals the principal
rank of vK. Consider the Hahn product I' := H;c;R endowed with the
lexicographic order. The error function of a root « of f is the map

¢ :TU{oo} =T U{oo}
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given by
O(z) = Z min{z, v(a — ;) }.
i=1

If we wish to specify the root, we will write @, in place of .

Observe that & is strictly increasing. Moreover, ® is given by linear
functions ¢;(z) = a;x + ~; for some a; € Ny and 7; € I'. We can thus define
the slopes of ® to be the numbers a;. Then the vertices of ¢ are located
at © = v(a — o) for some numbers k € {1,...,n}. The slopes of ® are
decreasing, with the first slope equal to n, and the last slope equal to the
multiplicity of a. Moreover, ®(c0) = {oc} and ®(I') = I since I is divisible.
In particular, ® is a bijection. Note that ®~!(z) > 0 if z > 0, since

nd~(z) > Zmin{@l(x),v(a — )} =0 (x) =z > 0.

Moreover, if f € O[z] is monic, then ®~!(x) < 0 if z < 0, since in this case
we have that ®(z) = nz. In particular, in this case we have that ®~!(z) =0
if and only if x = 0.

Let o1 and ay be two roots of f. We claim that

D, () = Dy, (2) for all z < v(ag — an). (4.17)

To prove this, we will show that for every ¢ € {1,...,n} we have that = <
v(og — o) if and only if © < v(ae — ;). Indeed, suppose that z > v(a; — o)
and z < v(ag — o), then

r<v(o —az) =v(a; —q;) <z,

which gives us a contradiction. The opposite implication is proved analo-
gously. This proves (4.17).

Theorem 4.3.4. Let f and g be monic polynomials in Oklx] as in (2.1)
with m = n. Then there exists an enumeration of indices such that

v(ax = Br) = @5 (v(f — g)) for each k € {1,...,n},
where @, is the error function of the root oy, of f.

Proof. Fix any root oy, of f. Write o := a4, and define

pi=20. (v(f - g))

We will first show that the claim holds trivially unless we assume that
0 <v(f —g) < oo. Indeed, in the case of v(f — g) = oo there is nothing to
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show. Since f and g are polynomials in Oklz], we have that v(f — g) > 0.
Assume that v(f —g) = 0. We once again use the fact that f € Ok and f is
monic, thus by our observations before the theorem, ®,'(0) = 0. But then
the claim of the theorem states that v(ay — fx) > 0, which is always true
since vay, > 0 and vf > 0 (cf. part (a) of Lemma 3.2.4). Thus we may now
assume that 0 < v(f — g) < oo.

Recall that @ (z) > 0 if z > 0. Therefore we also have that 0 < p < oco.
We wish to show that f and g have the same number of roots (counted with
multiplicity) in the ball

B,(a) = {c € T | v(e - a) = p}.

Once this is shown for an arbitrary root «, we will be able to pair up the
corresponding roots of f and g which are in the same ball, since ultrametric
balls are either disjoint or comparable by inclusion. This pairing will then
satisfy our claim.

Let u be the number of indices ¢ with v(a; — o) < p. We wish to show
that p is also the number of indices j such that v(5; —a) < p.

Write N
falx) = Z ax’
i=0

and consider the Newton Polygon NP, . The slopes of NPy, are of the form
—v(a; — ) in increasing order. Therefore, NPy (i — 1) — NPy (i) < p for
n—pu <i<mn,and NPy, (i —1) — NPy (i) > p for i < n — u. Consider
the line ¢ going through the point (n — u,va;,_,) with slope —p, that is,
(i) = (n — p—i)p +wvay,_,. Then:

> i), i<n—p
NPL () =), i=n— g
> (i), 1>n—p.

Then the proof will be finished if we show the same for the Newton Polygon
NP, of the polynomial
Go = Z bt
i=1

Recall that (n — p) is the number of roots «; such that v(a; — ) > p.

Moreover, since a;,_, gives us a vertex of NPy , by (3.1) va;_, is equal to

the sum of the smallest ;1 many values of roots of f,. Therefore, if we write
J={je{l,....n}|v(aj—a)>p}, I:={1,....,n}\J,
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00) = (n—p)p+wva,_ Zp+z

= Zmin{p,v(ai —a)} =0.(p) =v(f —g) = 0(fa — Ga)s

where the last equality follows from part (a) of Lemma 3.2.4 and Lemma
1.6.1. Note that u < n by definition. We claim that:

. > (1), 1<n—u
NP (0 { =NPy, (1), i>n—p.
For i < n — p we have that va, > £(i) and
v(a; =) > v(fa = ga) = £(0) > £(i).

This implies that vb; > £(37).
For the case of i > n — pu we will first take ¢ such that (,va}) is a vertex
of NP, . We know that:

00) = v(fo = ga) > 0=wa,,, and £(0)>{(n—p)=va, ,.  (418)
If va,,_, = 0 = va,, then there exist no indices ¢ > n — p which give us
vertices of NPy, . If vaj,_, > 0 = vay,, then for every i > n — u we have that

va; < va,_, < L(0) =v(fo — ga) < v(b; — a;).

This means that for every index i > n — p for which (i,va}) is a vertex of
NPy, we have that va, = vb.

Now consider i > n — p which does not give us a vertex of NP, . We
know that va] > NPy, (i) and that

NPy, (i) < max{va,,_,,va,} < v(fa = ga),
where the last inequality follows from (4.18). Hence,
vb; > min{va;, v(a; — b))} > min{NPy (i),v(fo — ga)} = NPy, ().

We have now shown that va, = vl for each index ¢ > n — p1 that gives us
a vertex of NP, , and that vb] > NP, (i) for other indices ¢ > n — p. On the
one hand, recall that for i < n— u, the point ¥ lies on or above the line /. On
the other hand, the slope located on the right of the point (n — p,va;_,) is
strictly greater than the slope of ¢. This means that the point (n —pu,vb],_,,)
must also be a vertex of NP, and therefore

NPy, (i) = NP, (i) for i > n — p.
This finishes the proof. O
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Remark 4.3.5. Take f and g as in Theorem 4.3.4. Assume that oy is a
root of f such that agv is a root of fv of multiplicity p. This means that
v(ag—a;) > 0 for precisely u values of i, and v(ay — ;) = 0 for the remaining
indices i. By Theorem 4.3.4 we have that v(ay, — i) > @, (v(f — ¢)). This
implies that

o(f —9g) < Polv(on —Br)) = Zmin{v(ak = B)s vl — i)} < po(ay, — Br).

Thus, v(ay — Br) > @. In particular, if v(f — g) > 0, then for all & we
have that
o(f —9)

U(Oék: - Bk) > T

This is a form of root continuity which resembles the classical results such
as Theorem 2.1.3.

We have seen that Theorem 4.2.2 is an alteration of Theorem 4.3.1 which
does not require the polynomials to have integral coefficients, at the cost of
exchanging the separant with another bound.

We claim that the assumption on f and g having integral coefficients
is necessary for Theorem 4.3.4 to remain true with the original error func-
tion. It remains an open question whether one can replace the error function
with another function such that the resulting theorem will not require the
polynomials to be in Og|x].

We will show examples of monic polynomials f and g of degree n such
that there exists a root a of f such that for every root 5 of ¢ such that

v(a = B) <, (v(f —9))-

Note that the proof of Theorem 4.3.4 assumes without loss of generality that
v(f — g) > 0 since otherwise the claim trivially holds for f,g € Og[z]. We
will give one counterexample each for v(f — g) being positive, negative and
equal to zero. In each of the cases we assume that we are working over the
algebraic closure of Q with any extension of the 2-adic valuation.

Example 4.3.6. The example for v(f — g) < 0 is as follows: we take



We have that v(f —g) = —3. The error function @ is the same for both roots
of f. We compute:

, 11 . 2%, o< -2
@(m)—x+mln{x7v<2—4>}—a;—l—mln{x,—Z}—{ > 9.

Then @' (v(f — g)) = —1. But we have that

fla) = <x—;> <$+;>—x2—i,

1++2 1-+2 ) 1
g(x)z(x— 5 )(w— 5 )zx —T-g

®(z) = 2 + min{z,v(—1)} =  + min{z,0} = {

Then

z, x2>0.
Note that ®~!(0) = 0. We have that

Lo 1+v2 v@—l—l——1<0
U132 2 V9 T T Y

1 142 242 V2 1
U<—2— 5 )zv( 5 >:v<1+2>=—2<0-

Example 4.3.8. For the counterexample where v(f — g) > 0, we take

f(x) = (x—é) <x+;>=m2—i,
() )
2 2

2
— 2?2 — .
x T =7
The error function is as in the previous example and ®~'(v(f — g)) =
®~1(1) = 1. Note that v(1 +v/5) = v(1 — v/5) = 1 because v((1 + v/5)(1 —
V5)) =2 and v((1 ++/5) + (1 — v/5)) = 1. We thus can compute:

Lo2+ve) _ (14VE)
Ylem T2 )TVl T TP

U<;—2_2\/5>—U<1_2\/5)—0<1.
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Chapter 5

Continuity of roots and poles for
rational functions

5.1 Extending the Gauf valuation to K(z)

In this chapter, we study possible generalizations of root continuity the-
orems on the polynomial ring K[z] to the rational function field K (z). Note
that the Gauf valuation we have used on K|x] was a tool to be able to
approximate a polynomial by means of approximating its coefficients. For
our applications (see Chapter 6), it is useful to be able to find a polynomial
whose coefficients are close enough to those of a fixed polynomial which we
are considering. To have a similar look at the field K (x), we may consider a
“naive” approach. That is, two rational functions

F(z) = f(x) Z?:o a;xt g(x) ZZO by

=== G(z) == =

fla)y Yyt glx) S b

will be “close to each other” if the respective values v(a; — b;) and v(a; — b;)
are “large”. However, in this setting, we can make any two rational functions
arbitrarily close to each other by multiplying the numerators and denomina-
tors by an element in K of sufficiently large value. To avoid this situation,
we will fix the representation of the functions in K (x). Any rational function
H(z) = % € K(z) can be written uniquely in such a way that h and h
are coprime, and such that h is monic. We assume that each rational
function considered in this section is represented this way.

With this convention, we can make the “naive” statement more precise.
We define a mapping v : K(z) x K(z) — vK as follows:

u(Fv G) = min{v(f - g),v(f - g)}
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Since we are now considering only one representation of each rational func-
tion, the polynomials f, g, f , g are uniquely determined by F' and G. There-
fore, this mapping is well-defined. We will then say that two rational func-
tions F, G € K(x) are close to each other, if the value u(F, G) is large.
Note that there is a second natural way to define closeness of two rational
functions. Given the Gaufs valuation on K[x], we extend it to the valued field

(K(x),v) I)y setting
(% A> =v] —v A.

This valuation gives us an ultrametric w : K (z) x K(x) — vK given by
w(F,G) = v(F = G) = v(f§ - gf) = v(f3).

Note that the mapping w does not depend on the representation of the func-
tions f, f g, §. Indeed, multiplying each of the numerators and denominators
by a term will appear in v(fg — gf) and in U(fg) hence it will cancel once
we calculate v(F — G).

Proposition 5.1.1. The mapping u is an ultrametric on K (x) which extends
the ultrametric given by the Gauf$ valuation v on K|x].

Proof. We have that u(F,G) = oo if and only if f = g and f = §. Since in our
setting the polynomials f, f , g, g are uniquely determined by the functions
F and G, this happens if and only if /' = G. Moreover, u(F,G) = u(G, F)
follows directly from the definition of w.

Consider now a third rational function H = % Then

WP H) = minfo(f - h),o(f - 1)} A A
min{minfo(f ). olg — )} min{o(f — 9). 000~ D)}
= min{min{v(f — g),v(f — 9)}, min{v(g — h),v(g — h)}}
= min{u(F,G),u(G, H)}.

v

Hence, u is an ultrametric on K(x). Since each pair of polynomials f,g €
K|[x] has a unique representation of the form £ - and £, we have that u(f,g) =

v(f — g). Therefore, u extends the ultrametrlc glven by the Gauft valuation
on Klx]. O

We will now have a closer look at the ultrametrics v and w on K(z).

Proposition 5.1.2. Assume that (G;);er is a net of rational functions con-
verging to F' € K(x) with respect to the ultrametric u. Then (G;)jer — F
with respect to w. However, the converse does not hold in general.
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Proof. Fix F = § € K(z) and a net of rational functions (G;);er := (Z—J)
i/ jer

for some directed set . Assume that this net converges to F' with respect to
u. In other words, for every § € vK there exists jo € I such that for every
Jel,j = jo, R

o(f—g)>d and off - ) > 6.
Fix any € € vK. We wish to show that from some point on, w(F,G;) > «.
We choose jo € I such that for all j € I, j > jy, we have that u(F,G) > 0 :=
e —min{vf,vf}. Then:

U(i_%)

f 9

u(f3; — g;f) —v(fg)

o(f9; = 95f) = v(f35 — T+ FF = 9:f)
min{v(fg; — ff)a U(ff - gjf)}

min{vf +o(f = §;),0f + o(f = g;)}

min{vf + & — min{vf, vf},vf—l—g — min{vf, vf}}

€.

w(F, Gj)

AVARIV]

VvV Vv

Hence, if (G;)jer — F with respect to u, then the same holds with respect
to w. To prove that the converse does not hold, we will look at the following
example.

Example 5.1.3. Consider Q with the 2-adic valuation v, take I to be the
set of positive integers and set a := % We take:

1 ol
F(x):= T Gj(x) == o

We claim that w(F,G;) = j, but u(F,G;) = v(f — g;) = v(f — ;) = —J.

Indeed,
1 j J_ ol
wrG) = o] - o) = (TEES)
1 z+ow xr+al

= vw—v(z+a)=0-(—j) =

On the other hand,
U(ozj—l) =—j and v(aj+0zj—1) = —J.

Hence we have found a net of polynomials convergent to F' with respect to
w, but not convergent to F' with respect to w.
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Note that in particular, for the rational functions in Example 5.1.3 we
have that

uw(F,G;) # w(F,G;) =v(F — Gj).

We know that the ultrametric u|x, on K[z] comes from the Gauf valuation
v. The extension of v from K[z] to K(z) is unique, since for every H = % €

K (z) we must have that vH = vh — vh. However, this is not the case for
H = F — G as in the above example. This gives us the following corollary.

Corollary 5.1.4. The ultrametric w on K(z) does not come from a valua-
tion.

5.2 Root continuity for rational function fields

We will now look at the topic of continuity of roots with respect to wu.
For F' = § € K(z), an element a € K is called a root of F' if it is a root of

[, and a pole of F if it is a root of f Recall that we are assuming that f
and f are coprime, hence an element cannot be simultaneously a root and a
pole of F.

For F,G € K(x), we fix the following notation:
]i(x) _ Z?:o LA | Y o)) n > 17ﬁ > 1’

F(x):

(@)  Xigaw  an il (z—a)’

~

9@ _ Tiobiat b I (@50 .
G2) =50 = Shhe = mllnes)y MmM2Lm21L

@

Analogously to the case of polynomials, we define:
AR ;
deg ? = max{deg f,deg f},

Y(F) == min{y(f),7(f)}, 7" (F) = min{y(F),0}

and

kras(F') := max{kras(f), kras(f)}.

Note that in this setting, the results we will prove for rational functions
cannot be applied to polynomials, since (5.1) assumes that both the numer-
ator and the denominator are not the constant polynomial.
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Theorem 5.2.1. Take ¢ > max{0,kras(F)} and F,G € K(x) as in (5.1)
with deg G > deg F'. Write

d := max{deg(f — g),deg(f —9)}

and assume that
u(F,G) > deg(F)e — dv*(F) + max{vay,, 0}. (5.2)

Denote by t;, and t, the multiplicity of oy, and é&y, respectively. Then there
exists an enumeration of roots and poles of F' and G such that

v(oy — Br) > tge for all k € {1,...,n}

and
V(G — Pi) > tee for all k € {1,...,n}.

Proof. Note that ¢ > kras(f). Moreover,

o(f —9) > deg(}f)a - dv*({?) + maXA{van, 0}
> deg(f)e —deg(f — 9)v"(f)-

Since f and ¢ are monic polynomials and v( f — g) > 0, we must have that
degf = deg g. This means that we can apply Theorem 4.2.4 to f and g. We
obtain that, after a suitable rearranging of indices, v(d&y — ffk) > t;, for all
ke{l,....n}.

We now wish to use an analogous argument for the polynomials f and g.
Indeed, we have that e > kras(f) and

o(f —g) > deg(f)e — deg(f — g)v"(f) + van.

We will now work with § := a;'g and the monic polynomial f := a;'f. Our
condition now reads:

o(f = §) > deg(F)e — deg(F — 3)7"(F).
Note that kras(f) = kras(f), hence also ¢ > kras(f). Finally, observe that
since v(f —g) > 0 and f is a monic polynomial, the coefficient of § next
to 2" must have value 0. This shows that degg > degf. We may now
apply Theorem 4.2.4 to f and § to obtain that, after a suitable rearranging
of indices, v(ay — fB) > ti for all k € {1,...,n}. Since f has the same roots
as f and ¢ has the same roots as g, this finishes the proof. O
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In the bound for root continuity for polynomials, the term d was simply
equal to deg(f — g) (see e.g. Theorem 4.2.2). As of now, we do not know
whether one can replace the term d in the bound in Theorem 5.2.1 with
deg(F — G). It would be possible if for all rational functions F' and G we
had that

deg(F — G) > max{deg(f — g),deg(f — 9)}.

However, this is in general not true. Indeed, take

xt 4 222 xt + 223
Flz) =2 Ga)= —=
(z) z+1 7 (z) x4+ 3

)

over any field K with char XK' # 2. We see that deg(F' — G) = 2, and
deg(f — g) = 3. However, this example is not a counterexample to a version
of Theorem 5.2.1 with deg(F — G) in place of d. Indeed, let a € K be such
that a®+2 = 0. Then 0, a and —a are roots of 2* + 2z%. Since va = % and
v2 > 0 with respect to any valuation on K, we have that

uw(F,G) =12 < 202 = v(2a) < kras(F).
In particular, we cannot have that
u(F,G) > deg(F)e — deg(F — G)vy*(F) + max{va,, 0}.

The question remains open whether there exists an example of F, G € K(z)
where the above inequality is satisfied, but the assertions of Theorem 5.2.1
do not hold.

Note that the bound for u(F,G) depends on both F' and G. In general,
we cannot specify a bound for u(F,G) that is independent from the degree
of G. The argument for this is the same as the one for polynomials (see
Example 4.2.6).

However, for continuity of poles, we can specify a bound that only depends
on f. Indeed, we have that if u(F,G) > 0, then deg f = degg and so
deg(f —§) < i—1. Then the claim for the poles a;, and f; in Theorem 5.2.1
holds under the assumption that

v(f = §) > he — (A — 1)y ().

Corollary 5.2.2. Take ¢ > max{0,kras(F)} and F,G € K(x) as in (5.1)
with deg G = deg ' = N. Assume that

w(F,G) > Ne — Nvy*(F) + max{va,, 0}.
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Denote by t, and t, the multiplicity of ay and é&y, respectively. Then there
ezxists an enumeration of roots and poles of F' and G such that

v(og — Br) > tge for all k € {1,...,n}

and X
v(éy, — Br) > tee for all k € {1,...,7}.

Proof. Since deg G = deg F', we have that the degrees of f, f, g and g are
all bounded by deg F'. We thus have that

max{deg(f — §),deg(f — g)} < N,

and so we can apply Theorem 5.2.1 to obtain our result. O

A natural question arises whether we can formulate an analogous result
on continuity of roots and poles for the ultrametric w on K(z), possibly by
changing the bounds given in Theorem 5.2.1 and Corollary 5.2.2. Example
5.1.3 shows that not every sequence convergent with respect to w is con-
vergent with respect to u. That example uses rational functions for which
some of the polynomials are constant. However, in general it is not true that
every counterexample must include a constant polynomial in a numerator or
a denominator.

Example 5.2.3. Consider Q with the 2-adic valuation and set « := % We

define 2, - ,
, j j

F(x):zi::x—’_ , Gj(x)::%:ziaxﬂ_a )

f x g 2+ air+1

Then R
v(fg; — fg;) = v(at + 222 +1) =0,

and v(f§;) = vad = —j. Therefore,
w(F,G;) = v(fg; — fg;) — v(fd;) = J

Hence, G converges to F' with respect to w, but not with respect to u.
Observe that this example is not a counterexample to continuity of roots

and poles with respect to w since the roots of f and g; coincide, while one

root of §; converges to 0 (this can be seen directly from looking at NP, ).
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Chapter 6

Applications

In this chapter we will prove a number of results using the root continuity
theorems presented earlier. Moreover, we are able to say more about the
roots and the irreducible factors of polynomials which are sufficiently close
to each other. As before, we consider a valued field (K, v) and the extension
(I? ,v). All algebraic extensions of K will be equipped with the corresponding
restriction of v. We let K¢ be the completion of (K, v), equipped with the
canonical extension of v. The first result in this chapter is an application of
Theorem 2.1.3. It can also be found in [15, Theorem 32.19].

Theorem 6.0.1. The completion of a Henselian field is again Henselian.

Proof. Take a monic polynomial f € Ok<[z]| and assume that fv has a simple
root ¢ € (K°v = Kv. We wish to show that f admits a root & € Oge such
that av = (. Extend the valuation v to the algebraic closure of K¢. Since ( is
a simple root of fv, there is a unique root « of f which under this extension
satisfies av = (. If we show that a € K¢, then the proof will be finished. To
this end, fix any € > 0. We wish to show the existence of an element g € K
such that v(a — ) > ¢.

By the definition of K*, for any 6 > 0 we can find ¢ € KJ[z]| such that
v(f —g) > 4. Since f has integral coefficients, it follows that g € Ox[x]. We
employ part (c¢) of Theorem 2.1.3 to find that if v(f — g) is large enough,
then g has a root / such that v(a — ) > . We have to show that 5 € K.
Note that v(f — g) > 0, thus we have that gv = fv, so that also gv admits
¢ as a simple root. The field (K, v) is assumed to be Henselian, so there is a
root By € Ok of g such that fyv = . Since v(aw — ) > € > 0, we have that
Bv = av = ( = fyv. But ( is a simple root of gv, so 5 =, € K. O
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6.1 Continuity of factorizations for Henselian
fields

In this section, we will state a result from [15] (Theorem 6.1.3). It says
that in a Henselian field, separable polynomials which are sufficiently close
to each other, have factorizations which are “close to each other”. That is,
the number of irreducible factors is the same for both polynomials, and those
factors can be paired in such a way that they are close to each other.

Once this theorem is proved, in the next section we will work on finding a
version thereof which does not assume that the polynomials in question are
separable.

For further results, we will employ the following technical lemma.

Lemma 6.1.1. Take an arbitrary valued field (L,v) and elements
Cl;-~~;cn7d17~~~7dn c L

such that ve; <0 for all i. Take € > 0 and assume that for 1 < j < n,

v(icj—d;) >e — v H G

1<i<n

Then for every subset I C {1,...,n},

v (H ¢ — Hdl) > €. (6.1)

el el

Proof. Observe that since ve; < 0 for all ¢, the value of any product of the ¢;
also does not exceed 0. Since ¢ > 0, it follows that v(c; — d;) > 0 for all j,
which in turn implies that ve; = vd;.

By induction we show that for 1 < k < n,

v(H ci—Hdi>>e—v H ¢ > e, (6.2)

1<i<k 1<i<k k+1<i<n

where for k = n we have that v [[_, ., ¢; = vl =0.
Given I C {1,...,n}, we can without loss of generality renumber the
elements ¢; so that I = {1,..., k} for some k. Then (6.2) will prove (6.1).

Observe that (6.2) holds for £ = 1 because

v(iey —dy) >e—w H G >e—0 H c;i.

1<i<n 2<i<n

78



Now assume that 1 < k < n and that (6.2) holds for k. We compute:

u( IT «- ]I d,.>_

1<i<k+1 1<i<k+1
= v (Ck+1 H ¢ — dpt1 H di)
1<i<k 1<i<k
= v (Ck+1 H C; — dpy1 H Ci + dpy1 H ¢ — dr g1 H di)
1<i<k 1<i<k 1<i<k 1<i<k
> min {v(ck+1 —dgy1) +v H ¢, Vdpi1 + v < H c — H di> } .
1<i<k 1<i<k 1<i<k

By the assumption of our lemma,

v(Cpy1 — dgs1) + 0 H ci>E—U H ¢+ H G >e—v H ci.

1<i<k 1<i<n 1<i<k k42<i<n

By our induction assumption,

Udk+1+v<H a—|] di>

> vdpi1+e—v H G
1<i<k 1<i<k k4+1<i<n
= VUCky1 +E€—V H C;
k4+1<i<n
= &—0 H C;.

k+2<i<n

This shows that (6.2) holds for k£ + 1 in place of k£ and completes the proof

of our lemma.

In the special case where (K, v) is a valued field and the rational function
field K(z) is endowed with the Gauf valuation, we can take ¢; = = — «;
and d; = z — ;. Then ve; < 0, v(¢; —d;) = v(ay — B;) and v ][, ¢; =

v][.,(xr — ;). Thus with L = K (x), the above lemma yields:

Corollary 6.1.2. Take a valued field (K,v) and oy, ... ,on, P1,. .., 0, € K.

Choose a non-negative value € € vK and assume that for 1 < j <n,

v(a; —Bj) > — v H (r — ).

1<i<n
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Then for every subset I C {1,...,n},

v (H(:p — ;) — H(az — ﬂz)> > e, (6.3)

icl el

The following is Theorem 32.20 from |15]. It allows us to obtain informa-
tion on the irreducible factors of polynomials which are sufficiently close to
each other. We give a proof by use of Theorem 2.1.3.

Theorem 6.1.3. Let (K,v) be a Henselian field and f = fy ... f. where
fi, .-, fr are distinct monic separable irreducible polynomials over K. Then
for every e > max{0, kras(f)} there is some d € vK such that for every monic
polynomial g € Klx] satisfying v(f — g) > § we have that g = g1 - ... - gy,
where g1, ..., g, are distinct monic separable irreducible polynomials over K.
Moreover, for each k € {1,...,r} the following assertions hold:

(a) deg fi, = deg gx and v(fx — gr) > €,

(b) for every root « of fy there exists a root B of gy such that K (o) = K(3),
(c) fx and gx have the same splitting field,

(d) for all roots « of fi, and 5 of g, K(a) and K () are isomorphic over K.

Proof. Let n = deg f and choose any € > max{0, kras(f)}. By assumption,
f has n distinct roots ay,...,a, € K. We take any J satisfying

0=n(e—vf=7(f)).
Then the assumption v(f — g) > J implies that

g 1= v(fng) +7*(f) > e—vf > e >max{0, kras(f)}.
By Theorem 2.1.3, for every «; there exists a unique root 3; of g satisfying
v(a; — ;) > g¢. Consequently, g is separable.

For every k € {1,...,r}, we define g, = [[(z — 3;), where the product is
taken over all ¢ such that «; is a root of f;. Then the factors g, are separable
and pairwise distinct, and deg f, = deggy. Thus it suffices to show that
each g is an irreducible polynomial over K. Let a; be a root of fj; then
by construction, f; is a root of gy. Assume that oa; = «;. Since (K, v) is
Henselian, we have that v(o; — 03;) = vo (o — ;) = v(a; — Bi) > €o. As f;
is the unique root of g such that v(a; — ;) > e, it follows that o3; = ;.
Therefore, every ¢ € Gal K maps the roots of g, onto roots of g, and thus
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gr is a polynomial over K. Conversely, let 3; and 3; be two roots of g. Since
fr is irreducible over K, we can find o € Gal K such that oa; = oj. By the
same argument as before we find that o3, = ;, which means that g; must
be irreducible.

Since for each 1 < i < n we have that v(a; — 5;) > €9 > € — vf, we can
employ Corollary 6.1.2 for the elements «; and 3; to obtain:

Vicker v(fx — gk) > €.

This proves assertion (a).

Fix any root f; of g. Since g is separable over K, ; lies in K*P. Agssume
first that 8; € K. Then the corresponding irreducible polynomial is of the
form x — ;. Thus K(5;) = K = K(«;), in which case assertion (b) of the
theorem holds. Now assume that §; € K* \ K. By our choice of ¢y and by
Krasner’s Lemma (Lemma 4.2.1) we obtain that K («;) C K(5;). But if k is
such that «; is a root of f, then [K () : K| = deg fr = deg gr = [K(5;) : K],
showing that K(«;) = K(f3;). This proves assertion (b), which readily implies
assertions (c) and (d). O

From the above theorem we derive the following result.

Corollary 6.1.4. Let (K,v) be a an arbitrary valued field and take a monic
separable polynomial f € Klx]. Assume that f has a factorization into dis-
tinct irreducible polynomials over K" of the form f = fi-...- f.. Then for
every € > max{0, kras(f)} there is some 6 € vK such that for every monic
polynomial g € K|x] satisfying v(f — g) > § we have that g = g1 - ... - gy,
where g1, . .., g, are distinct monic separable irreducible polynomials over K",
Moreover, for each k € {1,...,r}, assertions (a)—(d) of Theorem 6.1.3 hold
for K" in place of K.

6.2 Irreducible factors over the henselization
and double cosets in the Galois group

In this section, we will have a closer look at the polynomials in a factor-
ization of a given polynomial over a henselization of a field K. We will then
study the connection between the irreducible factors and representatives of
double cosets. To this end, we will employ notions from [9, Section 7.9]. Let
Hy, Hy be subgroups of a group G. Then for g € G the set

ngHz = {hlghg | hl € H] A hz € HQ}
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is called a double coset of G. The set of all such double cosets induces
an equivalence relation on G, with respect to which two elements ¢, go are
equivalent if HygyHs = HigoH>. For each element in the corresponding
equivalence class we may then choose a representative. This notion will be
employed for subgroups of the group Gal K.

Notation 6.2.1. Throughout, we will consider a finite extension L|K and
fix the representatives ¢q,...,ts € Gal K of the double cosets

{(Gal K")(Gal L) | « € Gal K'}.

Note that s < (Gal K : GalL) < [L : K] < co. For « € Gal K we denote by
resy(¢) = t|; the restriction of ¢ to L. Further, by [L : K], we denote the
degree of the maximal separable subextension of L|K, and we set

[L: K]

[L: Klins == 7[[, ; K]sep.

We define the characteristic exponent of K to be charexp K := char K if
char K > 0, and charexp K := 1 otherwise. Then [L : Kl is a power of
charexp K for any finite extension L|K.

The following two lemmas can be found in [9, Lemma 7.46] in a more
general form, with an arbitrary algebraic extension K’ in place of K". For
our purposes the result in the simplified form is sufficient.

Lemma 6.2.2. An automorphism « € Gal K lies in Gal K"i; Gal L if and
only if the isomorphism ves,,,(1t;") : t;L — 1L can be extended to an isomor-
phism of (1;L).K" onto 1L. K" over K".

Proof. Take ¢ € Gal K. Then an automorphism in Gal K extends res,, (t¢; )
if and only if it lies in the coset 1.; ' Galy; L. This coset is equal to

i ti(Gal L)t = o(Gal L)t

Hence, there is an extension of res,, ;(1¢; ') to an isomorphism over K" if and
only if
((Gal L)t N Gal K™ # 0.

But this is equivalent to ¢ € (Gal K")i; Gal L. O

Lemma 6.2.3. Consider L|K as in Notation 6.2.1 and let K be the mazimal
separable subextension of L|K. Assume that Ky = K(«) and take f to be
the minimal polynomial of o over K. Let f = f1-...- f. be the factorization
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of f into irreducible polynomials over K". Then r = s, and after suitably
rearranging indices we have that v;a is a root of f;, so that

(1K) K" : K" = deg fi.

Moreover, the following equalities hold:

[L: Klins = [(tL). K" : K"pg, 1< <5, (6.4)
[L:K]= Z [(,;L).K" . K", (6.5)

Proof. Observe that since K,|K is finite and separable, we can always find
a such that K, = K(«).

We will first prove Equation (6.4). Note that L| K} is purely inseparable
and thus, Gal L = Gal K,. As K"|K is separable, so is (1;K,).K"|1; K, . Since
1;L|1; K is purely inseparable, it is linearly disjoint from (1;K,).K"|1; K, and
(t;L). K" (1;K,). K" is purely inseparable. This yields that [;L : ;K] =
[(t;L).K" : (1,K,).K"] and that (;;K,).K"|K" is the maximal separable
subextension of (1;L).K"|K". Hence,

[L: Kins = [l : ;K] = [(t:,L). K"+ (1K) K" = [(1,0). K" © K"js.

Consider o and f = f; - ... f, as in the assumption of the theorem.
Then I‘eSLiKS(LLi_l) 1, K, — 1K, can be extended to an isomorphism of
(1;K,).K" onto (1K,).K" over K" if and only if ;o and ta are roots of the
same irreducible factor. We apply Lemma 6.2.2 to K in place of L to obtain
that there are s many such factors, and we may enumerate them such that
Lo is a root of fi. Then [(1;K,).K" : K" = deg f;. Hence,

L: Klep = [K,: K] =deg f= Y degfi= Y [(tK).K":K". (6.6)

1<i<s 1<i<s
Since the extension (1;L).K"|(1;K,).K" is purely inseparable, we have that

(LK) K" K" = [(1L). K" : K"gop = [(tsL). K" - K" - [(t,L). K" K" L
In view of this equality and by Equation (6.4), multiplying Equation (6.6)
with [L : K]y yields Equation (6.5). O

Assume that charexp K = p. For f € K][x] denote by ins f the degree
of inseparability of f, that is, the maximal number p” which divides every
exponent in f(z). In this case f(z) can be written as f(z?") for some f €

K|[z], and ins f = 1.
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Lemma 6.2.4. Fiz any irreducible polynomial f € K|x] and let o be a root
of f. Assume that ins f = p* and take f € K[z] such that f(z?") = f(x).
Let f = fl S fr be the factorization off into irreducible polynomials over
K" and set fi(x) := fi(z?"). Then f = fi-...- f. is the factorization of f
into irreducible polynomials over K. Moreover, for vi,...,ts chosen as in
Notation 6.2.1 for L = K(«), and after suitably rearranging indices, v;x is a
root of f; and deg f; = [(L:K(a)).K" : K. In particular, r = s.

Proof. We observe that f is irreducible over K since every factorization f =
gh leads to a factorization f = §(«*")h(z?"). Moreover, f is separable.
Indeed, if it were inseparable, then by its irreducibility we would have that
f'=o.

But this would mean that every exponent in f is divisible by p, which
contradicts the construction of f .

We have that « is a root of f if and only if o?” is a root of f. Thus the
extension K(aP”)|K is separable, and K(a)|K(a?") is purely inseparable.
Therefore, if K is the maximal separable subextension of K in K(«), then
K, = K(a”"). We apply Lemma 6.2.3 for f in place of f and o?” in place
of @. We obtain that f splits into irreducible factors fl, ey fs over K" such
that (¢;a)?" is a root of f;, and

deg f; = [(,K,). K" : K").

In particular, f = fl L fs is precisely the factorization of f into irreducible
polynomials over K", hence r = s. We define f;(z) := fi(z*"), then f =
fi-...-fs and ;v is a root of f;. We observe that ;K (o) = K(1;«) and ;K5 =
K ((t;)"). Since K"K is separable, also (K ((t;a)?") .K") |K ((t;a)?") is
separable and thus linearly disjoint from K (t;a0)|K ((1;)P"). Therefore,

[K(n0).K": K" = [(,K(a)).K": K",
[K((i)”). K" : KM = [(uK,).K": K",
[K(n0). K" : K((1;0)"). K" = [K(ua): K((u0)P)].

Consequently, the equality
[K(1;0). K" : K" = [K (). K" . K((1;0)P").K"] - [K((t;0)""). K" : K"]
implies that
(LK (a).K": K" = p"[(,K). K" - K" = p” deg f; = deg f;.
This shows that the f; are irreducible over K™". O
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The assumption on the separability of f in Corollary 6.1.4 can be dropped
at the cost of adding an assumption on ins f and insg.

Theorem 6.2.5. Let (K,v) be an arbitrary field and take f € K|x] monic
and irreducible over K. Assume that f has a factorization into distinct ir-
reducible polynomials over K" of the form f = fi-...- f.. Forinsf = p¥
take f € K[z] such that f(z*") = f(z). Then for every ¢ > max{0, kras(f)}
there is some § € vK such that the following holds: If g is any irreducible
monic polynomial over K satisfying ins g > ins f and v(f — g) > 9, then:

- deg f =degg and insg = ins f,
-g=gq1-... g, where qi,...,g, are irreducible polynomials over K",

- for each k € {1,...,r}, assertions (a)-(d) of Theorem 6.1.3 hold with
K" in place of K.

Proof. For f as given in (2.1), we take 6 > max{va; | 1 <i < nAa; # 0}.
Choose any irreducible monic polynomial g such that v(f—g) > ¢. Then a; #
0 implies that b; # 0, so then deg f = degg. Moreover, since ins f divides
every ¢ such that a; # 0, we must also have that ins g < ins f. Together with
the hypothesis that insg > ins f we then obtain that insg = ins f; let us
assume that it is equal to p".

Let f, § € K[x] be such that f(z*") = f(x), g(a*") = g(x). Then fis
separable and irreducible over K. Let f = fi-...-f be the factorization
of f into irreducible polynomials over K". By Lemma 6.2.4, fi(z?") = fi(x);
in particular, the polynomials f; are distinct. Since U(f g) o(f(zP") —
g(z*")) = v(f — g), we may apply Corollary 6.1.4 to f and § in the place of
f and g, enlarging the originally chosen § if necessary (note that this value
only depends on f, not on g). We obtain that the respective factorization of

g into distinct irreducible polynomials over K" is of the form § = g, - ... - g,.
Set gp(7) := gu(zP") € K"[z]. Since g is irreducible and ins g = ins f = p*,
by Lemma 6.2.4 we see that g = g1 - ... - g, is precisely the factorization of ¢

into irreducible polynomials over K™.
Since a root a?” of f} corresponds to a root « of f, the last assertion
follows from Corollary 6.1.4 applied again to f and g. O

Remark 6.2.6. Assume that for the monic irreducible polynomial f as in
(2.1) and the corresponding 6 > max{va; | 1 < i < n Aa; # 0} we have
already chosen a monic irreducible polynomial g as in (2.1) such that v(f —
g) > 6. We leave it to the reader to observe that, under these assumptions,
the following properties are equivalent:
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(a) we can find ¢’ > 9 such that v(f — g) > ¢’ and

8 >max({va; |1 <i<nAa; #0}U{vb; |1 <i<nAb #0}),

(b) for all i € {1,...,n} we have that va; = vb;,
(c) forall 7 € {1,...,n} we have that b; # 0= a; # 0.

If the above conditions are satisfied, then in the same way as in the preceding
proof we can show that insg = ins f. In this case the hypothesis “insg >
ins f” is therefore not needed. Note that conditions (a) (c) are stronger than
this hypothesis.

Example 6.2.7. We claim that there exist monic irreducible polynomials f
and g such that v(f — ¢g) > max{va; | 1 <i<nAa; #0}, but insg < ins f.
To this end, we will employ a construction which can be found in [10].
Consider the field K := F,(t) with the t-adic valuation and take the
element ¢ := }. Then the monic polynomial f(z) := a? — ¢ is irreducible over
K. Take d € K such that vd > 0, define g(z) := 27 — dP"'z — ¢ and take a
root # of g. Then g is a root of the Artin—Schreier polynomial 2 —z — +.
Since v-5 < 0, we have that p-v% = v% ([10, Lemma 2.27]), and so vf = “.
This means that @ ¢ K. Since all the roots of g are of the form 6 + d - i,
where 7 € F),, this shows that the polynomial ¢ is irreducible over K. The

polynomials f and g thus satisfy our claim.

The irreducibility of g in Theorem 6.2.5 is essential for assuring that the
corresponding factorization of g over K" yields irreducible polynomials:

Example 6.2.8. We claim that there exists f € K[z] monic and irreducible
over K such that for every 6 € vK there exists a monic polynomial g € K|[z]
satisfying insg = ins f and v(f — g) > J, but f and g do not split into
the same number of irreducible factors over K", and assertions (a)-(d) of
Theorem 6.1.3 do not hold for any choice of ¢ > 0 and any of the polynomials
fr, gr, and their respective roots.

Take (k,v) to be the rational function field F,(¢) with the ¢-adic valuation,
extended canonically to F,((¢)). Since the transcendence degree of F,((t))
over [F,(t) is infinite, we can choose an element in F,((¢)) transcendental
over k. For example, take z := Y >0 t?" € F,((t)) and define K := k(z).
Consider the purely inseparable extension k:(z%)|K of degree p. Observe that
2p = St e Fy((t)), thus zv € K¢, Take f to be the minimal polynomial
of 27 over K, that is, f(x) = 2P — 2.

86



To prove our claim, fix any element § € vK and assume without loss
of generality that § > 0. Since = K¢ we can find an element § € K
such that U(Z% — B) > 6. (In fact, we can take 8 = >_I'  t" for n large
enough.) Consider the polynomial g(z) = a? — f? € K|[z], then ins f = insg
and v(f — g) = v(z — BP) > pd > 0. Since K"|K is separable and f(z) is
purely inseparable, we cannot have v € K h so f(x) must be irreducible
over K". On the other hand, g splits into p linear factors already over K,

so in particular over K", Clearly, K h(z%) cannot be equal nor isomorphic to
K"(B) = K" over K".

6.3 The Fundamental Equality and ramifica-
tion theoretical applications of root conti-
nuity

In this section, we will have a closer look at properties of henselizations.
We will work with Notation 6.2.1 in order to study the connection between
the representatives of the double cosets and the henselizations with respect
to different extensions of the valuation v. This will allow us to give a proof
of the well-known Fundamental Equality. Moreover, we will show that if two
polynomials are close to each other, then their roots give rise to extensions
which have the same ramification theoretical invariants.

For the next results we will require a number of properties of the henseliza-
tion K. The extension (K"|K,v) is immediate (|5, Corollary 5.3.8]). Note
that any algebraic extension of K" is again a Henselian field. Thus if
(K,v) C (E,v) C (K,v), then we have that

(E" v) = (E.K",v). (6.7)
Take any o € Gal(K|K). Then the map
vo=voo:E>ar v(oa) € vK

is a valuation on E which extends K. In fact, all extensions of v from K to
E are conjugate. That is, all the extensions are of the form vo, where o is
an embedding of E in K over K (|5, Theorem 3.2.15]).

Consider the group

G = GYK|K,v) := {0 € Gal K | v(ox) = vz for all z € K}
called the decomposition group of ([~(|K,v), and its fized field
K?:=Fix(G%) :={a € K | 0(a) = a for all o € G%}.
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We will also write (K|K,v)? in place of K% to specify which valuation we are
considering. This field is the henselization of K with respect to the valuation
v. For more details on ramification theory, see e.g. [!, Chapter 3|, |5, Sect.
5.2|, |9, Chapter 7] or |11, Sect. 2.9].

For the convenience of the reader we include a number of results on G¢
and K¢. The following statements can be found in |9, Sect. 7|.

Lemma 6.3.1. Toke 1,0, 7 € Gal K.
(a) We have that (K|K,v) = 1K
(b) If vo = vt on 7 K%, then vo = vt on K and o7~ ! € G°.

(¢) The restriction resgn (1) is the unique isomorphism over K sending
K4 onto (K|K,v)?.

Proof. Observe that GK|K,vi) = ! (Gd([aK,v)) ¢t (|11, Proposition
9.4], |4, (15.2)]). Assertion (a) thus follows since Fix(:'Gt) = 7! Fix(G)
for any automorphism group G.

Consider now o and 7 as in (b), then vor~! = v on K9 Since the

extension of v from K¢ to K is unique, vor~! = v also holds on K. Assertion

(b) then follows from the definition of G.

It follows from part (a) that the restriction of :=* is the required isomor-
phism. If there were a second isomorphism, say o~!, then vo = vi on ¢t ' K¢,
so by part (b), :™! and o~! must coincide on K. This proves part (c). [J

If w is another extension of v from K to K , then we will denote by K"(®)
the henselization of (K, v) in (K, w) The above lemma allows us to represent
extensions of v from K to K" by means of the automorphism ¢.

Lemma 6.3.2. For every ¢ € Gal K, the field ("' K" vi) is the henseliza-
tion (K" 1) of (K,v) in (K,vt), and (K", v) is isomorphic over K to
("LK" vi) via the uniquely determined isomorphism resn(11).

Proof. The assertion follows from the definition of the henselization together
with part (a) of Lemma 6.3.1. The uniqueness of resgx(:7) comes from part
(c) of that lemma. O

Lemma 6.3.3. Let v1,...,ts and L be as in Notation 6.2.1, and write v; :=
vi;. Then (L. K" v;) is the henselization of (L,v;) in (K,v;), and it is
isomorphic over K to (1;L.K" v) via 1;. Further, the distinct extensions of v
from K to L are precisely the restrictions of the valuations v; to L, 1 <1 < s.
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Proof. By virtue of Lemma 6.3.2, (¢; ' K", v;) is the henselization of (K,v) in
(K, v;). From Equation (6.7) it follows that (L..; K" v;) is the henselization
of (L, v;) in (K, v;). The restriction of 1; is an isomorphism from (L..; ' K" v;)
onto (;;L.K",v) over K.

Assume that for some + € Gal K we have that v« = vi; on L. Then
ve and wve; are both extensions of the same valuation from L to K. Since
those extensions are conjugate, there exists 7 € Gal L such that vy, = vt
on K. By Lemma 6.3.2, ;7 'K" = T_lbi_lKh is the henselization of K in
(K,v) = (K,v,;7), so the restrictions of ¢™* and 771" to K" must be
equal. Hence, o := 17717 € Gal K" and thus ¢ = o1;7 € (Gal K");(Gal L).

For the converse, assume that ¢ € (Gal K")i;(GalL). Write ¢« = ouT
with o € Gal K" and 7 € Gal L. Since Gal K" = G4(K|K,v), we have that
vea = vo;Ta = vi;a for all @ € L, that is, ve = ve; on L. O

The above lemma allows us to describe all extensions of v from K to L
using the representatives tq, ..., ¢, of the respective double cosets. In partic-
ular, the number of such distinct extensions is precisely s.

Note that the field K"v) = ,~'K" lies in the henselization L") =
L.; ' K" (the last equality follows from Equation (6.7)). Since ¢; sends ¢; ' K"
onto K" and L..;* K" onto ¢;L.K", we find that

[P0 kMO = [, L. K" - K" = [(,L)" : K. (6.8)
We can then apply Equation (6.5) to obtain:

[L: K] = [LM: KM, (6.9)

1<i<s

The degrees [L"%) . K"v)] are called local degrees. Hence the equation says
that the degree [L : K] is the sum of the associated local degrees.

Finally, we will present a result on the behavior of the following rami-
fication theoretical invariants related to polynomials that are close to each
other. Recall from Section 1.4 that the ramification index of (L|K,v) is
e(L|K,v) = (vL : vK), and the inertia degree is f (L| K, v) := [Lv : Kv|. The
Fundamental Inequality (which can be found e.g. in [5]) states that

[L:K]> Y e(L|K,v) - f (L|K, v).

1<i<s

If v extends uniquely from K to L, then by the Lemma of Ostrowski (see e.g.
[13]) we have that

[L: K]=p" e(L|K,v)- f(LK,v),
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where p = charexp Kv. The factor p” is called the defect of the extension
(L|K,v) and denoted by d(L|K,v).

In general, for a finite extension L of a valued field (K, v), we can define
defects in a similar manner, using the fact that the valuation in each ex-
tension LM¥)|K"™v) extends uniquely and that henselizations are immediate
extensions:

e(L|K,v;) - f(LIK,v;)
This is often called the Henselian defect. We can now combine Equations

(6.9) and (6.10), together with the definition of the defect, to obtain the
following version of the Fundamental Inequality:

d(L|K,v;) :==

(6.10)

[L:K]= > d(L|K v)-e(L|K,v)-f (LK, v). (6.11)

1<i<s

Lemma 6.3.4 (|9], Lemma 11.2). Let ¢y,...,ts and L be as in Notation
6.2.1. Then for each 1 <1i < s we have that

d(L|K,v;) = d((¢,L).KMK" v) = d(,LIK,v),

e(L|K,v;) = e((tL).K"K"v) = e(,LIK,v),

f(L|K,v;) = f((uL).K"K"v) = f(,L|K,v).
Moreover, the following equality holds:

[L:K]= Z d(u;L|K,v) - e(,, LK, v) - £ (1, LK, v). (6.12)

1<i<s
Proof. Since henselizations are immediate extensions, we obtain:
f (LK, v;) = [Lv; « Kv;) = [LM0; 0 KMO0) = (L7 Ko 0 (67 Ky

As observed before, ¢; sends ¢; ' K" onto K" and L..; ' K" onto ;L. K". There-
fore, the above number is equal to

(L. K" . K™ = [(,L)" : K™ = [1;Lv : Kv] = f (,,L] K, v).

The result for e(L|K,v;) is proved analogously from the same observations.
The result for d(L|K,v;) then follows by Equations (6.10) and (6.8). Those
equalities together with Equation (6.11) imply Equation (6.12). O

The notions and results presented in the above lemmas now allow us to
formulate the following root continuity theorem.
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Theorem 6.3.5. Let (K,v) be an arbitrary valued field, [ € Klx] an ir-
reducible monic polynomial over K and o € K a root of f. Further, let
V1, ..., Vs be all extensions of v from K to K(«). Then there is some 6 € vK
such that the following holds: If g is any irreducible monic polynomial over
K satisfying ins g > ins f and v(f — g) > 0, and if B € K is a root of g and
wi, ..., wy are all extensions of v from K to K(B), then s =t and after a
suitable renumbering of the w;, we have that

d(K(a)|K,vi) = d(K(B)|K, w;)
e(K(a)|K,v) = e(K(B)|K,w;)
F(K(a)|K,vi) = F(K(B)|K, w) .

Proof. Observe that by Lemma 6.3.3 the extensions of v from K to K («) are
in correspondence with the double cosets as in Notation 6.2.1 with L := K(«)
via v; := vi;. By virtue of Lemma 6.2.4 we can choose the indices of the
irreducible factors fi,..., fs of f over K" in such a way that 1« is a root
of f;. We do the same for g and its irreducible factors gi,...,g;, taking
L := K(p) and choosing the automorphisms ¢}, ..., .

Take 0 as in Theorem 6.2.5. Then the factors f; and g; satisfy the asser-
tions of that theorem; in particular, we have that s = r = t. After a suitable
renumbering, we can assume that ¢} is a root of g; if and only if ¢;a is a root
of f;. By Lemma 6.3.4 we have that

f (K (a)|K,v) =f (K (a)K"K" v) = (K (). K")v : KM

By Theorem 6.2.5, ;K (a).K" = K"(y;0) and /K(B).K" = K"(/}3) are
isomorphic over K". Therefore, the degree above is equal to

[K"(na)v : K™ = [K"(,p)v : K™ = f (LK (B). K" K" v),

which in turn is equal to f (K (5)|K,w;) by Lemma 6.3.4. The equations for
the inertia degree are analogous. The result for the defect then follows from
these equations, together with (6.8) and (6.10). O
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