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Abstract

The present work is aimed to falsify the multiverse as it is prescribed by the Third

Quantization formalism of Canonical Quantum Gravity. The formalism naturally predicts

pair creation of universes and so the possible existence of a twin antiuniverse of that

we inhabit. We extensively study the quantum entanglement between them for different

models, finding that it is relevant at the initial singularity, at the maxima and minima

of expansion, and at some exotic singularities like the Little Rip singularity. We use the

conclusions found from the entanglement research to constraint the interaction between

our universe and its twin and thus recreate the semiclassical Friedmann equation from

where we obtain the dynamics of the universe which takes the entanglement effects into

account. We then apply it in order to get the observational imprints of our hypothetical

twin antiuniverse on the spectrum of the cosmic microwave background. For the case we

consider, the constant coupling which governs the strength of the interaction is calculated

to be λo ≲ O(10−56) s−3 in order to reproduce the angular power spectrum obtained by

Planck satellite. We finish by completing the Third Quantization formalism including a

new particle in the multiverse accountable for the interaction between universes. That

way, Third Quantization formalism is the true Quantum Field Theory it was supposed to

be by construction.
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Conventions and List of Symbols

• Regarding the writing style, I preferred to take the whole responsibility of what it is

written. That is why I use the pronoun ’I’ when something was done by myself to

differentiate it from the case when something was made in collaboration with my

teammates or it is customary in the literature, for which I employ the pronoun ’we’.

This preference can be understood as impolite for which I apologize right now.

• As usual, greek indices (µ, ν, ...) are reserved for spacetime components and latin

indices (i, j, ...) for spatial components.

• Equations are written in natural units, c = ℏ = 1, except where it is indicated.

• Einstein summation is assumed when indices are repeated in a proper covariant way.

• In general, unless specified, we used the sign criterion (−,+,+,+).

• Curvature tensors and derived ones are defined as follows.

– Levi-Civita connection:

Γσ
µν = 1

2g
σλ (∂µgλν + ∂νgµλ − ∂λgµν) .

– Riemann tensor:

R λ
µνρ = ∂µΓλ

νρ − ∂νΓλ
µρ + Γλ

µσΓσ
νρ − Γλ

νσΓσ
µρ.

– Ricci tensor:

Rµν = R λ
µλν .
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– Ricci scalar:

R = gµνRµν .

– Einstein tensor:

Gµν = Rµν − 1
2gµνR.

– Einstein field equations (in the most fundamental manner):

Gµν = κTµν .

• Dirac notation and function notation will be employed indifferently.

Physical Variables:

L Lagrangian

L Lagrangian density

H Hamiltonian

H Hubble parameter

H Hilbert spaces, except in Section 4

Mathematical Symbols:

∝ Proportional to

x∗ Complex Conjugated of x.

x† Conjugate Transpose of x.

xT Transpose of x.

δ(x− xo) Dirac Delta at x = xo.

dim(X) Dimension of X.

∅ Empty Set.

C Set of Complex Numbers.

N Set of Natural Numbers.

R Set of Real Numbers.

R+ Set of Positive Real Numbers.

X∗ Set X ∪ {0}

{xi} Set of Elements xi

L2(R) Lebesgue Space L2

∂µ Partial Derivative.

∂2
µ Second Partial Derivative.

∇µ Covariant Derivative.

∇2 Laplacian Operator.

□ = ∂µ∂
µ D’Alambert Operator.

f−1 Inverse of f .

i Imaginary Unit.

e Euler’s Constant: 2.71828...
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1
Introduction

Before I was a student enrolled in Physics, I perfectly knew that there was no need

for seeing something to guess an explanation of its behavior. I was aware that negative

electrons moved around a positive atomic nucleus, whose behavior was ruled by something

called Quantum Mechanics, even though I had not heard what the Schrödinger equation

was. After my courses on Quantum Mechanics and Quantum Field Theory, I realized that I

was correct. There was something called electron, a fundamental particle, whose particular

motion and fundamental interactions with photons were derived from the Lagrangian of

a U(1) gauge theory named QED (see e.g. [1, 2]). Supposedly, we have never seen an

electron and we will never see it since it is a point particle. In an mathematical way of

thinking, one can say that something which is zero-dimensional, as this electron, could be

physical because it can built reality as in analogy with the real line from isolated points.

However, we argue that what it is important is just its effects, like its interaction at a

distance with other particles. The actual presence of those precise effects defines the

notion of electron, even if we have never isolated a single one due to vacuum polarization

or whatever other physical reason. Even stronger arguments than these can be given for

15



CHAPTER 1. INTRODUCTION 16

virtual particles. That way of proceeding is what I will use to obtain potential evidences

of the existence of other universes.

Here, I present a dissertation grounded on the theory of Canonical Quantum Gravity,

originally developed by DeWitt[3–5] from previous ideas by Dirac [6] and Bergmann [7]

about the Hamiltonian formalism for gravitation, the ADM formalism by Arnowitt, Deser

and Misner [8], and Wheeler’s novel theory of geometrodynamics [9]. With this as our

fundamental theory, we build a level III kind of multiverse, adopting the classification

by Tegmark [10], using the so-called Third Quantization of Canonical Quantum Gravity

[11]. Our multiverse is going to be an entity where universes are excited states of a field of

universes with different properties. Indeed, Third Quantization is nothing more than an

analogy to Quantum Field Theory but using universes as particles. We will only consider

the creation of a pair of universes from nothing, it is, a certain quantum vacuum defined for

the field of universes, where space and time are supposed to be non-existent. Pair creation

is expected to be the most natural way to create universes, since the three-leg vertex is

the most probable interaction in a field theory. As it happens to the spin of an electron

and its antiparticle, the positron, after the decay of some neutral vector boson, their spins

are entangled, and hence both universes by analogy. The analysis of the entanglement

of the pair is our aim, as it is its effects on the internal dynamics of each universe, i. e.,

how it changes the Friedmann equations. In this manner, we could test the existence

of a twin partner of our universe just looking at its effects over our very universe, as in

the case of the electron. The deviation from the dynamics ruled by the standard ΛCDM

model implies a variation of the cosmological parameters, the primordial fluctuations, and

therefore the power spectrum of the photons from the Cosmic Microwave Background

(CMB). Proceeding as it is usually done, we can falsify our model by comparing the

expected power spectrum and the observed by Planck satellite [12], and constraint the

parameters of the theory for which the model fits the observational data.

There have been many other studies which include the interaction between infinite

or a very high amount of universes [13–20]. All of them, except in [20], do not treat a level

III multiverse but a level II multiverse, in which separated patches of the spacetime of

the same universe are causally disconnected. However, they also find that the dynamics
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of each patch is affected by the existence of the other disconnected regions as we find

it for level III multiverses. In comparison to those other studies, we consider only the

most probable picture in the Third Quantization scenario, which is the pair creation of

universes, where the interaction is just between two universes, that is, the most simple

one.

The structure of the present work is as it follows. I start reviewing the fundamental

points we are going to need on Canonical Quantum Gravity and the Third Quantization

picture in Chapter 2. In the same chapter, I explain how we find the entanglement entropy

of the pair of universes, which gives a qualitative measure of the state of entanglement

in which the bipartite system is. In Chapter 3, I analyze some general properties of

the entanglement entropy and its behavior for different cosmological models during the

evolution of the universe, i. e., as the time goes by in a cosmological and classical sense.

The observational imprints and analysis on the CMB due to the interactions with our

hypothetical twin universe is found in Chapter 4. In Chapter 5, a critical analysis of my

own results is given and a correction to the Third Quantization formalism is proposed to

improve its paradigm. Finally, in Chapter 6, I conclude with a summary of everything we

found, and give some prospectives of my work.



2
Third Quantization and the Pair

Creation of Universes

2.1 Introduction

As in any text in Physics, I start examining the theoretical foundations to what it

comes later on. Along the exposition of my results I will need to use some fundamental

concepts of General Relativity, Quantum Mechanics and Quantum Field Theory. Thus,

this chapter is going to be dedicated to remind all the necessary concepts and results of

each theory we will employ and to which I will be referring in future chapters.

2.1.1 General Relativity and Cosmology

The theory of General Relativity [21–23] is a well established theory of gravitation

which has been able to explain with high precision what we see at very large scales, for

instance, the recent observations of merging black holes and gravitational waves.

18



19 2.1. INTRODUCTION

Its application to Cosmology has also achieved many important goals, like the

description of the anisotropies of the CMB. The implication of an inflationary era to

explain those anisotropies requires the existence of some energy which exerts a repulsive

gravitational effect violating the strong energy condition [24]. The origin of such energy is

sometimes attributed to a scalar field, known as the inflaton, whose potential energy is

expected to be almost constant for a long period of that inflationary era. The observational

data also permits the existence of a cosmological constant Λ whose origin is not yet known.

Discussions on the origin of the cosmological constant will be avoided here. It must be

included as a new term in the original field equations of gravity to built the complete

Einstein field equations

Rµν − 1
2gµνR + Λgµν = κTµν , (2.1)

where κ = 8πG, and G is the gravitational constant.

The action from which we can derive this equation of motion is

SEH = Sg + Sm =
∫

d4x
√

|g|
[ 1
2κ(R − 2Λ)

]
+
∫

d4x
√

|g|Lm, (2.2)

where g = det(gµν), and Lm is the Lagrangian density of the matter fields, whence we

define the stress-energy tensor

Tµν = − 2√
|g|

δ
(√

|g|Lm

)
δgµν

. (2.3)

Eq. (2.2) is known as the Einstein-Hilbert action where we have included the matter fields

and the cosmological constant.

The derivation of the Einstein field equations (2.1) from the action (2.2) needs

attention on the boundary. Applying the principle of least action to find the equation of

motion for gµν into the manifold M, we find

δSEH

δgµν
= 1

2κ

[∫
M

d4x
√

|g| (Gµν + Λgµν) +
∫

M
d4x

√
|g|gαβ δRαβ

δgµν

]
+
∫

M
d4x

δ
(√

|g|Lm

)
δgµν

,

(2.4)

from where we recover Eq. (2.1) if and only if the second term in brackets disappears. That

term is generally vanishing when we consider a static metric on the boundary, otherwise

we need to include a correction term to cancel the value of that integral. This condition is



CHAPTER 2. THIRD QUANTIZATION AND... 20

necessary if we work with compact manifolds or we do not want to constraint the properties

of the metric anywhere. Working that term out a bit, it is
1

2κ

∫
M

d4x
√

|g|gαβ δRαβ

δgµν
= 1
κ

∫
∂M

d3xϵ
√

|h|K, (2.5)

where ∂M is the boundary of the manifold M, the variable K = ∇µn
µ is the extrinsic

curvature, nµ is a normal vector to ∂M, and ϵ = nµn
µ = ±1. It is called the Gibbons-

Hawking-York (GHY) term, and gives a generalization of the Einstein-Hilbert action (2.2)

as

SEH =
∫

d4x
√

|g|
[ 1
2κ(R − 2Λ)

]
− 1
κ

∫
∂M

d3xϵ
√

|h|K +
∫

d4x
√

|g|Lm. (2.6)

This generalized action will be used not to be mistaken due to boundary effects.

In regard to Cosmology [25], the ordinary way to study our universe is by virtue of

a homogeneous and isotropic portrayal given by the four-dimensional Friedmann-Lemaître-

Robertson-Walker (FLRW) metric

ds2 = a2(η)
[
−dη2 + 1

1 − kr2 dr2 + r2dΩ2
2

]
, (2.7)

where a(η) is the scale factor, used to be accountable for the relative size of the universe,

dΩ2
2 is a differential section of the two-dimensional solid angle in spherical coordinates,

the index of curvature and the conformal time are defined, respectively, like

k =



1, for a closed universe

0, for a flat universe

−1, for a open universe

, and dη = dt
a
, (2.8)

and t is the cosmological time. To maintain the essence of the model, a perfect fluid is

introduced as the matter content described by a stress-energy tensor like

T µν = diag(ρ, p, p, p), (2.9)

where ρ is the energy density and p is the pressure of the fluid.

The equations of motion obtained from the field equations (2.1) with the metric

(2.7) and the stress-energy tensor (2.9) are the Friedmann equation and the Raychaudhuri

equation

H2 = κ

3ρ− k
a2 + Λ

3 , and
..
a

a
= −κ

6 (ρ+ 3p) + Λ
3 , (2.10)
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respectively. With these two equations, the dynamics of the universe can be found once

the total content is fixed.

The equation of state of the perfect fluid in the simplest barotropic form is

p = ωρ, (2.11)

where ω is the barotropic parameter. A simple analysis of the dynamics ruled by Eqs.

(2.10) with this equation of state comes to the conclusion that there must be a singularity

at the very beginning of the expansion of the universe [26], popularly called Big Bang

singularity. At this singularity, the pressure and the density of the universe is expected

to diverge classically. However, for different equations of state, that can be also of the

barotropic kind p(ρ), or giving non-standard values to ω in (2.11), it is, out of the interval

ω ∈ [−1, 1], one can find that the universe shows some exotic singularities (a compilation

of some of them can be found in [27]). Those exotic singularities are classified by their

different properties. At the specific time in which they appear, the universe can be in any

state of pressure and density, for instance, moments when the pressure and the density of

the fluid vanish in the universe.

It is standard in Cosmology to recognize perfect fluids as a scalar field ϕ(t) whose

pressure and density are

p = 1
2

.
ϕ2 − V (ϕ), ρ(ϕ) = 1

2
.
ϕ2 + V (ϕ), (2.12)

where V (ϕ) is the potential energy of the field.

2.1.2 Quantum Theory

The description of the large scales through the theory of General Relativity keeps

as fundamental the determinism Physics had always enjoyed. Despite the success of

Physics as a deterministic science when applied for the classical world, its description

of the microscopic world was found to be fully probabilistic. The lost of the usual kind

of determinism and the new probabilistic operation of the more essential components of

reality has as implication the necessity of a philosophical interpretation.
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There were many physicist going after the theory, but it is said that its parents are

Heisenberg [28] and Schrödinger [29], who describe equivalent ways of writing the theory.

Quantum Mechanics is the microscopic theory which defines an essential object called the

wave function of particles or systems of them. It is a mathematical entity, living in L2(R)

except for some physically unrealistic ones, which is built upon quantum states |ϕi⟩ and

their probabilities pi like

|Ψ(x⃗, t)⟩ =
∑

i

√
pi(t) |ϕi(x⃗, t)⟩ . (2.13)

Schrödinger found it to fulfill a wave equation equivalent to the conservation of the energy

E = p2/2m + V , which Galileo stated in words [30, 31]. It is called the Schrödinger

equation [
− 1

2m∇2 + V (r⃗, t)
]

Ψ(r⃗, t) = i ∂
∂t

Ψ(r⃗, t), (2.14)

where m is the mass of the particle for which the wave function is Ψ(r⃗, t) in the position

representation. Here the quantization à la Dirac [32] of the position, linear momentum

and the energy

x̂ = x, p̂i = −i ∂
∂xi

, Ĥ = i ∂
∂t
, (2.15)

respectively, has been applied.

Schrödinger equation (2.14) comes from the action

SSch =
∫

d4x

[
Ψ†
(

i ∂
∂t

+ 1
2m∇2

)
Ψ − VΨ†Ψ

]
, (2.16)

when we apply the variational principle with respect to Ψ†.

It is interesting to point out that Quantum Mechanics is written on flat space and

without any relativistic consideration. It is, Minkowski spacetime, described by the metric

ηµν = diag(−1, 1, 1, 1), (2.17)

is not even considered.

On the quest for a relativistic Quantum Mechanics, Klein [33] and Gordon [34]

found out, accidentally, an equation of motion for complex scalar fields
[
□ −m2

]
Ψ(r⃗, t) = 0, (2.18)



23 2.1. INTRODUCTION

where Ψ(r⃗, t) is the complex scalar field, which is not related to any probability amplitude.

This is a quantum version of the relativistic equation for the conservation of the energy

E2 = m2 + p2. After a Fourier transform

Ψ(r⃗, t) =
∫

d3kΨ(k⃗, t)ei⃗k·r⃗, (2.19)

where Ψ(k⃗, t) is the wave function in the momentum representation, Eq. (2.18) is converted

into [
∂2

t + k2 −m2
]

Ψ(k⃗, t) = 0. (2.20)

It admits two conjugated solutions Ψ(†)
k ∝ e±iωt, where the dispersion relation ω2 = k2 +m2

holds. The Klein-Gordon (KG) equation (2.18) is therefore the equation of motion of the

field Ψ† whose action is

SKG =
∫

d4x
(
−ηµν∂µΨ†∂νΨ −m2Ψ†Ψ

)
, (2.21)

which is invariant under global U(1) transformations. The conserved Noether current

associated with the U(1) symmetry here shows that both solutions have opposite conserved

electric charges, representing a pair particle and antiparticle. Choosing the standard

convention, we will note particles as Ψ and antiparticles as Ψ† from now on.

2.1.3 Quantum Field Theory

The field described by the KG equation (2.18) is still a classical field depending on

the coordinates (r⃗, t). The so-called second quantization of Quantum Mechanics avoids

the usage of spacetime coordinates to simplify the analysis of interacting fields. That is

the matter of a Quantum Field Theory.

In order to construct it, same way a particle is described by a vector |Ψ⟩ into a

certain Hilbert space [35], a system of many particles is described by a Fock state into a

Fock space. A Fock state represents the system of a variable number of particles, each one

with its own properties. In general, one could denote it as |nk1 , nk2 , · · ·⟩, where nki
is the

number of particles in the state ki. It makes it the most natural way to think of a basis

for a Fock space.
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The annihilation and creation operators, â and â†, respectively, are physically

essential here. They act as expected

âk |nk⟩ = √
nk |nk − 1⟩ , â†

k |nk⟩ =
√
nk + 1 |nk + 1⟩ , (2.22)

annihilating a particle in the state k or creating a new one. The Fock space is then built

once the vacuum state |0⟩ is defined such that it is annihilated by the annihilation operator:

â |0⟩ = 0. The right ordered operation of both defines the number operator N̂k acting like

N̂k |nk⟩ = â†
kâk |nk⟩ = nk |nk⟩ , (2.23)

whose eigenvalue is the number of particles nk in the state k.

Thus, a complex quantum scalar field is a functional written in terms of the

annihilation and creation operators for the positive (â and â†) and negative (b̂ and b̂†)

modes

Ψ̂(r⃗) =
∫ d3k

(2π)3
√

2Ek

(
âke−i⃗kr⃗ + b̂†

kei⃗kr⃗
)
. (2.24)

The state â† |0⟩ is the 1-particle state, and b̂† |0⟩ is another 1-particle state. Choosing the

convention in which â† |0⟩ is the 1- particle state, then b̂† |0⟩ represents its antiparticle

whose charges are opposite.

It will be useful to know the relation between two different bases, let us say {|ui⟩}

and {|ūj⟩}, in which one can describe a quantum state |Ψ⟩:

|Ψ⟩ =
∑

i

[
b̂i |ui⟩ + b̂† |ui⟩∗

]
=
∑

j

[
ĉj |ūj⟩ + c† |ūj⟩∗

]
, (2.25)

where b̂ and ĉ are the annihilation operators for both bases. A relation between both bases

and its inverse, called the Bogoliubov transformations [36], exist as

|ūj⟩ =
∑

i

[αji |ui⟩ + βji |u∗
i ⟩] , |uj⟩ =

∑
j

[
α∗

ji |ūj⟩ − βji

∣∣∣ū∗
j

〉]
, (2.26)

where the matrices αij and βij are known as the Bogoliubov coefficients, fulfilling
∑

k

(
|αijα

∗
ik| −

∣∣∣β∗
ijβik

∣∣∣) = δij. (2.27)

Also, a relation for the ladder operators can be given as

b̂i =
∑

j

[
αjiĉj + β∗

jiĉ
†
j

]
, ĉi =

∑
i

[
α∗

jib̂i − β∗
jib̂

†
i

]
, (2.28)
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where the relations

⟨ui|uj⟩ = δij,
〈
u∗

i

∣∣∣u∗
j

〉
= −δij,

〈
ui

∣∣∣u∗
j

〉
= 0, (2.29)

have been expected for the right inner product.

It is clear that the definition of a certain vacuum |0⟩ is unique for a certain

normalized basis {|ui⟩}, and it is not the vacuum for a different one {|ūj⟩}. It is why we

find that 〈
0̄
∣∣∣Ni

∣∣∣0̄〉 =
∑

j

∣∣∣β2
ji

∣∣∣, (2.30)

which is the number of particles in the ui-modes present in the vacuum state
∣∣∣0̄〉.

And last but not least, we would like to remember that the interactions in Quantum

Field Theory are studied at the perturbative level. It implies that any coupling constant

which controls the strength of the interaction must be very small. For instance, let us

consider the Lagrangian density for interacting real scalar field up to the fourth order

L = −1
2∂µΨ∂µΨ − 1

2m
2Ψ2 − λ3

3! Ψ3 − λ4

4! Ψ4. (2.31)

The coupling constants λi={3,4}, must be much smaller than one for the amplitude probabil-

ities to converge after summation of all possible processes including loops. As it happens

for Quantum Chromodynamics, it is possible for the coupling constants to be close to the

unity or bigger, what would make us to use non-perturbative methods. Luckily, it will not

be our case at any point.

2.2 Canonical Quantum Gravity

2.2.1 General Theory and Discussion

In our research, the theory we employ is the Canonical Quantum Gravity (CQG)

theory, conceived by DeWitt [3–5] in 1967. It is well known to be one of the first quantum

gravity theories which yields some essential results when it is applied to Cosmology,



CHAPTER 2. THIRD QUANTIZATION AND... 26

Figure 2.1: ADM foliation of the spacetime.

setting off the field known as Quantum Cosmology (QC). This branch of Physics has been

extensively investigated during the 80’s, initiated by the seminal works by Vilenkin [37] in

1982 and Hartle and Hawking [38] in 1983.

In QC, one of the most important results is the existence of a universal wave

function which takes into account all the infinite degrees of freedom of the universe. The

paradigm of the theory is kept in line with the Many-Worlds Interpretation by Everett

[39], for which DeWitt expressed his liking, and his theory, to be in agreement with that

new interpretation of Quantum Mechanics [40]. A good discussion about it can be found

in [41].

The mathematical formulation of the theory starts by applying the ADM foliation

of the spacetime. A spacetime described by a general metric gµν will be decomposed as

[42, 43]

ds2 = gµνdxµdxν =
(
NaN

a −N2
)

dt2 + 2Nadtdxa + habdxadxb, (2.32)

where hab is the spatial part of the metric gµν , called the 3-metric, N(t) is called the lapse

function and Na(t) is the shift vector. The simple geometrical meaning of those vectors

can be understood taking a look at Figure 2.1. The differential distance between two

events was considered to be

dxµ = (Ndt, Nadt+ dxa)T. (2.33)

Hence, the generalized coordinates are now (hab, N,N
a, {φ}), where {φ} are the matter
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degrees of freedom.

The gravitational part of the Einstein-Hilbert action (2.6) is written with the ADM

metric (2.32) like

S = 1
2κ

∫
d4x

[
GabcdKabKcd +

√
h
(

(3)R − 2Λ
)]
, (2.34)

where Gabcd is the DeWitt’s metric

Gabcd =
√
h

2
(
hachbd + hadhbc − 2habhcd

)
, (2.35)

Kab = ∇anb is the extrinsic curvature, nµ is the normal vector to the hypersurface Σ(t)

satisfying nµn
µ = −1, (3)R is the Ricci scalar derived from the 3-metric hab, and h

is the determinant of hab. From (2.34) we check that the coordinates N and Na are

non-dynamical, but constraints, since

pN = ∂L
∂

.
N

= 0, pNa = ∂L
∂

.
Na

= 0. (2.36)

The associated momentum to the spatial metric, which is the only gravity-related dynamical

variable, is

pab = ∂L
∂
.
hab

= 1
16π

(
Kab −Khab

)
, (2.37)

where K = Kabh
ab is the trace of Kab. The action (2.34), after a straightforward calculation,

is

S = 1
2κ

∫
d4x

(
pab

.
hab −NH −NaHa

)
, (2.38)

from where we identify N and Na to play the part of Lagrangian multipliers and thus Eqs.

(2.36) give the relations

H ∝ Gabcdp
abpcd −

√
h

2κ
(

3R − 2Λ
)

= 0, Ha ∝ ∇bp
b

a = 0. (2.39)

The first equation is the constraint of the infinite-dimensional phase space to a

hypersurface whose Hamiltonian vanishes to which one should include the matter terms.

Each point in such phase space corresponds to a universe with a certain 3-metric, a certain

matter content, and some state of motion, generally speaking. The second equations is not

as important as the first one as it only imposes a condition on the momenta pab. Keeping
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in mind the idea of quantizing gravity through the most natural procedure, promoting the

canonical coordinates and their momenta to operators is the aim of CQG. The quantization

is made à la Dirac with the operators

ĥab = hab, p̂ab = −i ∂

∂hab

, {φ̂} = {φ}, {p̂φ} =
{

−i ∂
∂φ

}
. (2.40)

The resulting equation is the famous Wheeler-DeWitt (WDW) equation [3, 42]

HΨ =
{

−2κGabcd
∂2

∂hab∂hcd

+
√
h

2κ
[
−(3)R + 2Λ + 2κT̂ 00

]}
Ψ(hij, {φ}) = 0, (2.41)

where we have included the matter contribution and a new function Ψ(hij, {φ}) called the

wave function of the universe. If the matter content is just a combination of non-interacting

scalar fields, we recognize

T̂ 00 =
∑

n

[
− 1

2h
∂2

∂φ2
n

+ 1
2h

ij∂iφn∂jφn + V (φn)
]
. (2.42)

About Eq. (2.41), there are many things to point out, and I will expound shortly

some of them:

• A very important mathematical detail arises when the kinetic terms are quantized. It

is called the factor ordering problem[44–46]. It is about the choice among all possible

permutations one could make to quantize pabpcd in the first of Eqs. (2.39). Classically,

p2 is equivalent to any other term such as xp2 1
x
, or gµνpµpν to pµg

µνpν , but promoting

the term to an operator as we did in (2.40) makes it no longer equivalent. The

ambiguity makes unclear the right choice, and it also happens for the matter part

[47]. As we are unable to know whether we made the right choice or not [48], we

will use the named Laplace-Beltrami operator whose general form is

∇LB = 1√
|g|
∂µ

(√
|g|gµν∂ν

)
, (2.43)

which is, at least, covariant. Some studies has been done in order to avoid the

operator ordering problem (e. g. see [49]), and in which, accidentally, the operator

(2.43) gains importance. However, since the problem is due to the non-commutativity

of the operators in QM, the expectation is that the effect of the factor ordering

is only affecting the early stages of the evolution of our universe [50], where the

quantum interactions are stronger.
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• In Eq. (2.41) we have premiered the wave function of the universe Ψ(hij, {φ})

accountable for the quantum description of the whole universe in terms of the 3-

metric hij and the matter fields. The infinite-dimensional space built on the metric

hij and the fields {φ} is called superspace. In general, it is simple to realise that a

solution Ψ(hij, {φ}) in the superspace is almost impossible to be found unless we

limit the complexity of the functional differential equation. Its interpretation, in

spite of its given name, is not as a usual wave function since, for instance, it is not

normalizable in general [51–53]. The normalizability is usually sorted out by a more

suitable interpretation based on the Many-World Interpretation [54]. The predictions

from CQG are then for those values around the peak of the wave function of the

universe [55], and none for the oscillating or vanishing intervals. Hence, the WKB

approximation or any other semiclassical approximations are suitable for the theory

without loss of predictability [53, 56].

• Another physical problem is the choice of good boundary conditions for the wave

function. In principle, what the right boundary conditions are is still in debate [57].

The proposals have been many. The most used ones are: (1) the condition given

by DeWitt [3] to avoid the initial singularity imposing the vanishment of the wave

function, (2) the no-boundary proposal by Hartle and Hawking [38] in which space

and time do not exist at the origin, and (3) the tunneling proposal, which demands

just outgoing waves for the late state of the universe [58]. We will specify our choice

later on.

• The wave function of the universe represents a system for which time is not well

defined as in QM or Classical Mechanics [59–61]. This is known as the problem

of time in CQG. Time is an external variable in classical theories, serving as a

parametrization of any motion. The system a universal wave function represents

evolves according to the Wheeler-DeWitt equation throughout the superspace. The

notion of an external time is missing here since, in principle1, the observers sensible to

such time are not there. Recovering the usual notion of time is done in a semiclassical

way [56, 62–64]. The scale factor is thus recognized as a kind of parametrization of

1No religious affront is intended.
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time, which leads to physical questions since, for some models, the parametrization is

not well-defined, not being an isomorphism and, for instance, no difference between

Big Bang and Big Crunch can be inferred.

All the problems here listed have many more consequences and lead to physical and

philosophical discussions which we, and anyone, avoid somehow for the sake of researching

in QC. The mathematical treatment of CQG may be simpler for simplified superspaces,

but there is no way to get rid of those conceptual problems introduced above.

2.2.2 The Minisuperspace of FLRW Geometries

The most brutal, though intelligent, simplification one can perform on the infinite-

dimensional superspace is the reduction into a two-dimensional superspace [42], then called

minisuperspace, made of the unique coordinate of homogeneous and isotropic universes

[25], the scale factor a(t), and a single scalar field ϕ(t). The procedure here on is analogous

to the one we did throughout Section 2.2.1.

The metric (2.32) shows the properties of homogeneity and isotropy up under the

choice of a certain foliation for which the shift vector Na vanishes. Thus, for a flat universe,

k = 0, the FLRW metric (2.7) in terms of the cosmological time t is

ds2 = −N2(t)dt2 + a2(t)
[
dr2 + r2dΩ2

2

]
, (2.44)

where we have chosen spherical coordinates, and dΩ2
2 is the differential section of the solid

angle.

Using the metric (2.44) into the Einstein-Hilbert action (2.6) with the GHY term

yields [42]

SEH =
∫

dtL = 1
2

∫
dtN

−a
.
a2

N2 + ak − Λa3

3 + a3 .
ϕ2

N2 − 2a3V (ϕ)
 , (2.45)

where we integrated over d3x, we defined G = 3π/2, and we rescaled the field ϕ → ϕ/(
√

2π),

and its potential V → V/(2π2).
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The equation of motion for N , which is non-dynamical since pN = ∂ .
N
L = 0, yields

.
pN = ∂L

∂N
= 1

2

a.
a2

N2 − a3 .
ϕ2

N2 + ak − Λa3

3 − 2a3V (ϕ)
 = 0, (2.46)

which is a constraint we recognize as the Friedmann equation

H2 = Λ
3 − k

a2 + 2ρ(ϕ), (2.47)

after introducing the relation for the density in (2.12) and choosing N = 1, hence our time

variable is then recognized as the cosmic time t. With the same choice for N , the equation

of motion for a is ..
a

a
= Λ

3 − [ρ(ϕ) + 3p(ϕ)] , (2.48)

where we used the relation for the pressure in (2.12) and Eq. (2.47) to simplify it. This is

the second Friedmann equation.

The Legendre transformation of the Lagrangian (2.45) makes the Hamiltonian to

be

H = N

2

[
−p2

a

a
+
p2

ϕ

a3 − ak + Λa3

3 + 2a3V (ϕ)
]

= N

2

[
−Gabpapb − ak + Λa3

3 + 2a3V (ϕ)
]
,

(2.49)

where the canonical momenta are

pa = −a
.
a

N
, pϕ = a3 .

ϕ

N
, pN = 0. (2.50)

The quantization of the momenta is chosen to keep covariance having the form of the

Laplace-Beltrami operator (2.43) where Gab = diag(−a, a3) is the DeWitt’s metric we use

to define it, and thus

∇LB = − 1
a2

∂

∂a

(
a
∂

∂a

)
+ 1
a3

∂2

∂ϕ2 . (2.51)

That way, the simplified version of the WDW equation (2.41) for the minisuperspace,

given for homogeneous and isotropic universes, is then[
1
a2

∂

∂a

(
a
∂

∂a

)
− 1
a3

∂2

∂ϕ2 − ak + Λa3

3 + 2a3V (ϕ)
]

Ψ(a, ϕ) = 0. (2.52)

Before commenting about this equation, lets change it a bit for our convenience.

Usually, a more comfortable expression of Eq. (2.52) is obtained with the well-behaved
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parametrization of the scale factor α = ln(a):{
∂2

∂α2 − ∂2

∂ϕ2 − e4αk + e6α

[
Λ
3 + 2V (ϕ)

]}
Ψ(α, ϕ) = 0. (2.53)

It is much convenient since it is now a KG-like equation, it is, analogous to Eq. (2.18),

and because α ∈] − ∞,∞[ and not as a ∈ [0,∞[, which is a more suitable option to define

spacetime variables in a quantum theory. The Laplace-Beltrami operator (2.51) can now

be seen as a box operator, and the third and fourth term of Eq. (2.53) the mass of Ψ(α, ϕ):

m2(α, ϕ) = −e4αk + e6α

[
Λ
3 + 2V (ϕ)

]
. (2.54)

Besides, trying to get a perfect comparison with Eq. (2.18), there is an ambiguity about

what variable is playing the role of time or space. In general, α is taken to be the variable

playing the role of time for many reasons. Classically, the scale factor a is an explicit

function of time, and so is α, which is for the universe we inhabit, apparently monotonic

[25]. This leads to problems with the interpretation of the wave function Ψ(α, ϕ) when

a(t) is not monotonic [65].

For instance, let us consider a closed universe with a massless free scalar field

V (ϕ) = 0. The Friedmann equation (2.47) is simply

H2 =
.
ϕ2 − 1

a2 . (2.55)

The momentum associated with the scalar field in (2.50) is then constant, and so

.
ϕ = k

a3 , k ∈ R. (2.56)

Replacing
.
ϕ into (2.55), the scale factor is implicitly found as a function of time like

t− to =
∫ a2da√

k2 − a4
, (2.57)

whose shape a(t) is very similar to a simple semicircle into the interval [0, amax], where

amax =
√

|k| is the maximum size the universe gets. Furthermore, the trajectories in the

phase space are

ϕ(a) = ϕo ± 1
2arccosh

(
k

a2

)
. (2.58)

This example shows up clearly that there is a problem with the notion of time in

QC, or the interpretation of the scale factor as a good time variable. The wave function
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Ψ(a, ϕ) will not be different for expanding and contracting phases of the evolution since

it is not dependent on .
a but simply on a. The example is posed in Ref. [65], where the

analysis of wave packets drops the conclusion that at the returning point amax, the wave

packets interfere constructively, which means that the quantum behavior is remarkable.

The contracting branch must be seen as a wave packet in the minisuperspace coming back

in time from the Big Crunch singularity, where the classical universe collapses.

In general, we will work with non-interacting massless scalar fields unless we specify

something else. The potential of the scalar field is the set as V (ϕ) = 0, and therefore

the WDW equation (2.53) is separable since m(α, ϕ) = m(α). We split the differential

equation such that

− ∂2

∂ϕ2 Ψ(α, ϕ) = EϕΨ(α, ϕ),
[
∂2

∂α2 − e4αk + e6α Λ
3

]
Ψ(α, ϕ) = EαΨ(α, ϕ), (2.59)

where Eα + Eϕ = 0. Now, expanding the wave function in its Fourier modes

Ψ(α, ϕ) =
∫
R

dkA(k)φk(α)χk(ϕ), (2.60)

where A(k) is the distribution function of the modes k of the scalar field, one solves from

(2.59) the part corresponding to the matter field

χk(ϕ) = e±ikϕ, (2.61)

and uses it to write the WDW equation for φk(α) as[
∂2

∂α2 + k2 +m2(α)
]
φk(α) = 0. (2.62)

The solutions to this differential equation, in most of the cases, consist of Bessel functions

of some kind2. The boundary conditions for the wave functions here are found in the limit

α → −∞, where the WDW equation (2.62) is approximated to a free wave equation after

m(α) → 0 rapidly. In such asymptotic region, we impose the usual condition (also used

for cosmological perturbations of the inflaton [68]) such that only wave moving forward

like [35, 69]

φk(α) = 1√
2k

e−ikα (2.63)

2For definitions and properties of special functions I recommend to check Ref. [66] which is the updated

version of the renowned book in Ref. [67]. In special, I recommend the online version of it.
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are considered. Here, when we try to obtain boundary conditions for the wave function,

we can see the importance of the shape of Eq. (2.53) compared to (2.52).

Another condition which is usually imposed to some models is that the wave

function of the universe is vanishing as α → ∞. Such condition can be understood for

closed universes like the one I wrote about above if one treats the wave function as a source

of probability and wants to suppress the probability of infinitely expanded universes. For

instance, the wave function for a closed universe with a massless scalar field fulfilling this

condition goes like [42]

φk(α) ∝ K ik
2

(
e2α

2

)
, (2.64)

where Kν(z) is the modified Bessel function of the second kind. However, it does not fulfill

the condition (2.63) when α → −∞, since (2.64) is real everywhere. This condition will

be dropped for us since it seems a naive condition in general as it does not make any sense

for open universes, but the most important reason will be explained in Section 2.3.

It will be important to notice that, in principle, the distribution function A(k) in

Eq. (2.60) is not subjected to any constraint, and it is a complex function of the modes

k of the scalar field. Recovering the wave function Ψ(α, ϕ) requires knowing the form of

A(k). I will find strong constraints and select a very natural function of the modes for it

in Chapter 3.

2.3 Third Quantization and a Pair of Universes

2.3.1 A Quantum Field Theory of Universes

Up to now, the wave function of the universe is similar to a classical field Ψ(r⃗, t)

representing a complex scalar field as in Eq. (2.18). The discussion of whether it is scalar,

spinor [70], or any other kind [71] of wave function is not new, and it is still under review

[72]. Nevertheless, it is common in the literature to consider it a complex scalar field and

that is what we will do.
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Third Quantization (3rdQ) of CQG is a longstanding paradigm which follows the

same scheme we did in Section 2.1.3. Starting from the WDW equation (2.52), in the 3rdQ

picture the wave function of the universe is promoted to an operator acting on vectors of

a Fock space {|ni⟩} and thus we create a quantum field theory of universes. Such vectors

define states of excitation of the universes, or equivalently number of universes, in the

mode ki. The pioneer work on the topic is said to be Ref. [11], and applications [73–79]

and specialized reviews [80] have been published until today.

The WDW equation (2.53) is derived from the action

S3Q = 1
2

∫
dαdϕ

[
−ηµν∂µΨ†∂νΨ −m2(α, ϕ)Ψ†Ψ

]
, (2.65)

where ηµν = diag(−1,+1) and Ψ† is representing an antiparticle of Ψ. It is analogous to

the action (2.21) for complex scalar fields. An expansion like (2.25) represents any state

in terms of certain annihilation and creation operators bk and b†
k, respectively, which are

responsible for the mode k of the state.

The solutions of the WDW equation (2.62) are dependent on k, which is unique

for each solution, and also on α. It makes the solutions to be different for the in and out

regions, for which α → −∞ and α → ∞, respectively. Examples are given in Refs. [76,

77, 81, 82], where they calculated both solutions, Ψin
k and Ψout

k , and expanded in terms of

the ladder operators Cin and Cout:

Ψ =
∫

dk
[
CinΨin

k + C†
inΨin,∗

k

]
=
∫

dk
[
CoutΨout

k + C†
outΨout,∗

k

]
. (2.66)

Whatever was the definition of the vacuum at the in-region, the result of the expectation

value for each mode k of the number operator as in Eq. (2.30), where
∣∣∣0̄〉 is the vacuum

described by the Fock states of the out-region, is a kind of Planckian distribution. Hence,

and infinite amount of universes with a specific spectrum are created in the multiverse,

analogously to the Unruh effect [83–85].

The interesting characteristic of this special picture of the multiverse is that the

description of the interactions among the unknown amount of universes could be thought

to be quite small and described by the Lagrangian in Eq. (2.65) adding any kind of

interaction terms with their own coupling constants. Seeing the 3rdQ picture as a quantum
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field theory of universes is rather natural. The creation of baby universes from parent

universes subjected to a necessary change on its topology is easily explained this way [74,

86–88], and the most probable interaction must be the pair creation after the decay of a

single parent universe, whose QFT counterpart here is therefore the Schwinger effect [89].

2.3.2 A Pair of Universes and their Entanglement

2.3.2.1 A Universe and its Antiuniverse

At a singular point in the minisuperspace, a pair of universes can be created as a

particle and an antiparticle, and thus we can name them as universe and antiuniverse.

Given the 0-spin nature we gifted the universes in our paradigm, each complex scalar

function which describes a singe universe of a pair must be the complex conjugated of its

partner one. The initial state from where they started is denoted by |00⟩, following the

notation
∣∣∣U †U

〉
=
∣∣∣U †

〉
|U⟩, which is the combined quantum state of both universes. That

is the vacuum state where neither time nor space existed.

Here, the vector
∣∣∣U †

〉
is the quantum state of a contracting branch of the universes,

and |U⟩ is an expanding one. However, time is split in two directions for both universes

and, as seen for themselves, they are both expanding. A pictorial representation of the

pair is shown in Figure 2.2. Those states could have also been denoted by |U+⟩ and |U−⟩

for comparison with pair creation.

It is interesting to note that both are twins, but not necessarily identical or copies.

Each universe, after its creation, is subjected to the quantum rules which are purely

probabilistic. The fate of each one, as for example the appearance and distribution of the

large scale structure [90], will be mostly defined by the quantum fluctuations during their

early times, which is very unlikely that both universes replicate them ideally.

The representation in which the wave functions of each universe are obtained

from the WDW equation (2.52) or any equivalent, is usually called diagonal since the
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Figure 2.2: Pictorial representation of the pair, universe and antiuniverse, acting

like particle and antiparticle, respectively.

Hamiltonian which describes the system is separable

H = H1 + H2, (2.67)

where Hi is each individual Hamiltonian of the pair. Any other representation of the

system would involve non-separable Hamiltonians

H = H1 + H2 + Hint, (2.68)

where Hint is the non-diagonal part of the representation, which is responsible for an

interaction between them.

Even though the universes are described by complex scalar fields, it is still possible

that they are entangled via the mixture of states given by the non-diagonal representa-

tion. That entanglement cannot be given any reasonable sense, unless we set a realistic

representation like the invariant one.

2.3.2.2 The Invariant Vacuum

It is clear after the discussion in Section 2.3.1 that the state |00⟩ of the pair will

not be the vacuum for the rest of its evolution since their wave functions depend on the

individual evolution of the universes. At any other point of the evolution, the number of
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universes is expected to change with a certain spectrum of modes. The pair will no longer

be a pair of well-described modes, but an infinite combination of states |n−n+⟩, where

|ni⟩ is the excitation mode of each universe. Therefore, even if at the calculational level

the diagonal representation is simpler, it does not seem to be adequate so that the pair

remains described by the same state. It is then convenient to introduce a non-diagonal

representation in which the number operator is constant for the entire evolution of the

pair, called the invariant representation.

The invariant representation was first introduced by Lewis and Riesenfeld [91] in

order to study the time-dependent quantum harmonic oscillator[
∂2

∂t2
+ ω2(t)

]
Ψ(t) = 0, (2.69)

where ω(t) is the time-dependent frequency. They found the transformations from the

diagonal representation to the invariant representation in which the number operator is

invariant. Afterwards, the formalism was improved [92–96] into a more tractable form and

reviewed for cosmological applications [97].

Concerning the cosmological applications, one is able to apply this formalism for

certain WDW equations which are comparable to a time-dependent harmonic oscillator

identifying

ω2(α, ϕ) = − ∂2

∂ϕ2 +m2(α, ϕ), (2.70)

after comparison of Eqs. (2.53) and (2.69). A simple inspection of Eq. (2.53) shows that

the simplest case in which we get a time-dependent harmonic oscillator-like equation is

when there is no scalar field at all and only gravity is left, or (anti-)de Sitter spacetimes,

where there is a scalar field whose kinetic energy vanishes, or equivalently, a cosmological

constant Λ is different from zero. As we infer after the inspection, in general, it is not

possible to apply the formalism as it was given to us. The usage of this formalism for

Cosmology is not new [98], and it will be very useful for what is going to follow in next

sections. The application for a non-interacting massless scalar field will be given in Chapter

3.

Let us denote as b± and b†
± the annihilation and creation operators, respectively,

in the diagonal representation, where the + labels the universe and the − labels the
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antiuniverse branch. Besides, c± and c†
± are the ones associated with the invariant

representation, respectively. The transformation between both representations is then

ĉ− = αB b̂− − βB b̂
†
+, ĉ†

− = α∗
B b̂

†
− − β∗

B b̂+, (2.71)

where αB and βB are the Bogoliubov coefficients of the transformation. Defining the

function3

R =
√

Ψ2
1 + Ψ2

2, (2.72)

where Ψi are two linearly independent real solutions to the time-dependent harmonic

oscillator, those Bogoliubov coefficients are found to be written as

αB = 1
2

 1
R

√
ω

+R
√
ω − i

.
R√
ω

 , βB = −1
2

 1
R

√
ω

−R
√
ω − i

.
R√
ω

 . (2.73)

In such a new representation, the vacuum state will remain constant at any time,

and it is different from the vacuum described by the diagonal representation at any time,

except at the precise moment of the creation, where both vacuum coincide. That is why

we will denote the same vacuum state as |00⟩d and |00⟩i, being described by the diagonal

and the invariant representations, respectively. Applying it to a proper WDW equation,

the invariant representation is thus a very natural representation in which the pair is

unchanged. The selection of it makes the calculation of the entanglement entropy almost

straightforward.

2.3.2.3 The Entanglement Entropy

The entanglement entropy (EE) of a bipartite system like ours is customarily taken

as the von Neumann entropy [99–101]

SN = − Tr{ρA ln(ρA)}, (2.74)
3Generalization of R that may be useful for different applications can be found in Refs. [93, 94]. The

function is

R =
√

c1Ψ2
1 + c2Ψ1Ψ2 + c3Ψ2

2,

with the constraint W −2 = c1c3 − c2
2/4, where W is the Wronskian that must be constant. It is enough to

set c2 = 0 and c1, c3 = 1, which is our case.
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where ρA is the reduced density matrix

ρA = TrB(ρAB) = TrB

∑
ijkl

cijkl |ai⟩ ⟨aj| ⊗ |bk⟩ ⟨bl|

 =
∑
ijkl

cijkl ⟨bl|bk⟩ |ai⟩ ⟨aj| , (2.75)

of the bipartite system defined by the density matrix ρAB, where {|am⟩} and {|bn⟩} are

the vectors of the Hilbert space associated with A and B, respectively. This entropy

is bounded in the interval [0, log(dim(H))], where H is the Hilbert space in which it is

described. The maximum value of the EE is characteristic of maximally entangled systems.

The simplest example is a system of two qubits, whose maximum value is ln(2), since

the Hilbert space H is two-dimensional, and its canonical basis is {|↑⟩ , |↓⟩}. Therefore,

and since the entanglement is a unique property of the quantum world, the EE is said to

be a measurement of the quantumness of a system. Another definitions of the entropy,

and hence indicators of the quantumness, are the Rènyi [102, 103] and Tsallis [104, 105]

entropies, which extend the von Neumann one (2.74) like

ST
q = 1

1 − q
[Tr(ρq) − 1] , SR

q = 1
1 − q

[Tr(ρq)] , (2.76)

respectively, where q is a parameter. These entropies are said to be generalizations because

one recovers von Neumann entropy (2.74) taking the limit q → 1 [104, 106].

In order to find the EE of the pair of universes, one is compelled to use the invariant

representation in which the vacuum |00⟩i is invariant at any time. Thus, the pair is

described by the constant density operator ρ = |00⟩i ⟨00|. It can be expressed in terms of

the diagonal states |n−n+⟩d using the relation [69, 107–110]

|00⟩i = 1
|αB|

∞∑
n=0

(
|βB|
|αB|

)n

|n−n+⟩d . (2.77)

The reduced density matrix defined as in (2.75) is the density matrix for each single

universe of the pair. For example, taking the partial trace of the universe whose states are

|n+⟩, it yields

ρ− =
∞∑

n=0
⟨n+|ρ|n+⟩d ∝

∞∑
n=0

exp
{
ω(α)
T (α)

(
n+ 1

2

)}
|n−⟩d ⟨n−| , (2.78)

where ω(α) is the associated frequency to the time-dependent harmonic oscillator-like

equation (2.69), we have defined the temperature of entanglement

T (α) = ω(α)
2 ln [coth(r)] , (2.79)
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and the parameter

Q = tanh(r) = |βB|
|αB|

, (2.80)

which can be found to be bounded in the interval [0, 1] attending to the condition (2.27).

As a conclusion, it was stated in Ref. [111] that the temperature of entanglement and the

parameter Q could also be a good alternative to quantify the quantumness of a system.

An analysis of such statement is going to be done throughout Chapter 3.

The EE, which is the von Neumann entropy (2.74), comes directly from Eq. (2.78)

as [112, 113]

SN(α) = cosh2(r) ln
[
cosh2(r)

]
− sinh2(r) ln

[
sinh2(r)

]
. (2.81)

This expression is bounded in R+∗ as r is also in the same set. Also, I expressed the Tsallis

and Rènyi entropies (2.76) in terms of r as

ST
q (α) = 1

1 − q

[
sechq(r)

1 − tanh2q(r)
− 1

]
, SR

q (α) = 1
1 − q

[
sechq(r)

1 − tanh2q(r)

]
, (2.82)

to compare it with the von Neumann entropy in the following.

In order to maintain the idea of the pair as particle and antiparticle whose wave

functions are complex conjugated, we cannot choose, for example, the solution (2.64) as a

good one since it is real. Besides, such a solution is given by the boundary condition of

a vanishing wave function of the universe as α approaches infinity, which yields a single

solution. It makes impossible to consider such a boundary condition if our intention is to

find the EE, because we demand two linearly independent solutions to use for the function

R in Eq. (2.72). A more natural boundary condition is the one in Eq. (2.63) which sets

the universes starting in the Bunch-Davies vacuum.



3
Quantum Entanglement of a Pair of

Universes

Here I present the results to which I arrived based on the foundations showed along

Chapter 2. In general, we will focus our attention on the analysis of a pair of universes

with a massless scalar field born in the lap of 3rdQ of CQG. There is a variety of results

we will need to go on into the observational work done in Chapter 4. Those are the

most important outcomes. However, the theoretical results I get here are essential for the

observational part of this text.

As theoretical physicists, we care about the behaviour of whatever the dynamics of

a system can be. It is, we are not going to focus just on realistic scenarios whence we may

be missing some important theoretical understanding of the Physics underneath. It will

be the aim of Chapter 4 to get closer to reality and check the falsifiability of the theory

and the assumptions we work with and conclusions we get in the present Chapter.

Firstly, I will treat some mathematical details needed in order to find the EE of

42
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the pair of universes in a consistent manner. They will have a very important physical

consequences which, secondly, we will use and check along the sections in many different

models of FLRW universes which include models with standard and exotic singularities.

3.1 Existence of Solutions for a Pair of Universes

First of all, a question arises about the suitability of the pair production in the

3rdQ picture. In a perfect analogy to QFT, we demand that the wave function for each

universe of the pair is complex conjugated to the other one. But, does the WDW equation

admit two solutions with such a condition? In principle, I will assume that the WDW

equation accept a separable solution in Fourier modes with a certain distribution function

A(k) like (2.60), where the matter field function is (2.61), and thus the gravitational part

fulfills Eq. (2.62).

Eq. (2.62) can be written in terms of the scale factor a = eα, like{
a2 d2

da2 + a
d
da +

[
k2 +m2(a)

]}
φk(a) = 0, (3.1)

which is a second-order ordinary differential equation. Assuming that the expression into

the square brackets is analytical, it is necessary that m2(a) is also analytical, such that

m2(a) =
∞∑

n=0
mna

n, (3.2)

where mn are constants with at least one of them different from zero. If that is the case,

one can use the Frobenius method for differential equations [66] to solve (3.1). The indicial

equation I get is

R(R − 1) +R + k2 +mo = 0, (3.3)

from where I find

R1,2 = ±ik, (3.4)

knowing that mo is vanishing, in general, after inspection of Eq. (2.59). It implies that

the solutions φk(a) can be obtained as

φ
(1)
k (a) = aR1

∞∑
n=0

bn(R1)an, φ
(2)
k (a) = aR2

∞∑
n=0

cn(R2)an, (3.5)
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where bn and cn are constant that must be found by substitution into Eq. (3.1). Regardless

of any precise expression of m2(a) and the constants bn and cn, we can see from (3.5)

that both solutions φ(1,2)(a), and hence φ(1,2)(α), are complex conjugated since R1 is

the complex conjugated of R2. Those solutions are going to be equivalent under the

transformations

k 7→ −k, or equivalently, i 7→ −i, (3.6)

since both change the solutions (3.4) to the indicial equation one into the another.

Building the total wave function Ψ(α, ϕ) of the particle-like universe (2.60) is just

a matter of choosing one of those two functions φ(1,2)(α), any sign for the matter part

(2.61) and any complex function A(k). On the other hand, to get the antiparticle-like

wave function, one simply uses the complex conjugated functions of the ones we chose.

Therefore, there is always a pair of solutions which can be used as wave functions of the

universe and the antiuniverse of the pair, and which are in agreement with the picture

offered by 3rdQ formalism.

3.2 The Distribution Function A(k)

Up to now, I have not restricted the complex distribution function A(k) in any sense.

A property of it comes out as a side effect of restoring the matter-antimatter asymmetry

of the universe via 3rdQ [114]. The matter is described by positive modes and antimatter

by negative ones, but a general wave function is a mix of them. The solutions (2.60) and

its complex conjugated are integrated over all k ∈ R, and fortunately they are not unique.

Another integration interval would yield two different complex conjugated solutions.

For instance, let me consider the solutions

Ψ(1)(α, ϕ) =
∫ ∞

0
dkA(k)eikϕφ

(1)
k (α), Ψ(2)(α, ϕ) =

∫ 0

−∞
dkA(k)eikϕφ

(1)
k (α), (3.7)

which are just two wave functions obtained from different integration intervals of a certain

solution of Eq. (2.60). My intention here is to bestow the positive modes on a universe
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and the negative ones on an antiuniverse. As we concluded in Section 3.1, performing a

complex conjugation or the change k 7→ −k is equivalent for the solutions of Eq. (2.62),

and it also happens to the matter part (2.61). A fast calculation shows that

Ψ(2)(α, ϕ) =
∫ 0

−∞
dkA(k)e−ikϕ

[
φ

(1)
k (α)

]∗
, (3.8)

from where I conclude that A(k) must be symmetric around k = 0 in order to get the

condition we expected Ψ(1)(α, ϕ) =
[
Ψ(2)(α, ϕ)

]∗
. This also ensures the conservation of

the energy of the system since the same amount of particles are in both universes whose

energies are also the same.

From now on, I will only consider A(k) to be a Gaussian function around k = 0

with σ as its standard deviation

Aσ(k) = 1
σ

√
2π

e− k2
2σ2 , (3.9)

which was also used in Ref. [65], but there was not a physical reason to use it as in here.

3.3 Calculation of the Entanglement Entropy

The algorithm to find the EE for any of the models we will use is as follows.

As discussed in Section 2.3.2.2, there are only a few cosmological models which can be

compared to a time-dependent harmonic oscillator such that there exists an invariant

representation that can be found with the Lewis-Riesenfeld algorithm. The case under

study includes non-interacting massless scalar fields, that is V (ϕ) = 0. In such a case, the

frequency (2.70) is just

ω2(α, ϕ) = − ∂2

∂ϕ2 +m2(α) = − ∂2

∂ϕ2 + e6α Λ
3 − e4αk. (3.10)

This operator can be rewritten as

ω2(α) = Eϕ +m2(α), (3.11)

using the expression (2.59), which is an expression dependent only on α and where Eϕ

is a constant to be fixed, as usual, to a positive number. It makes it usable for the

Lewis-Riesenfeld algorithm.
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In order to apply it, the expression (2.72) demands two real wave functions. We

will take the real and the imaginary part of any of the solutions (3.7) or (3.8), which are

also solutions of the WDW equation (2.62). The important step is to obtain conjugated

solutions φ(1,2)
k (α). Since the boundary condition we apply is the one in Eq. (2.63), we can

be sure that the numerical method to solve Eq. (2.62) will yield two solutions which are

complex conjugated. Therefore, it is only necessary to calculate one of them – its real and

imaginary part. Then, we need to set a sign for the matter part (2.61) and the standard

deviation σ of the distribution function Aσ(k) in Eq. (3.9). With all those bricks, we build

the total wave function (2.60) whose real and imaginary parts will be Ψ(1)(α) and Ψ(2)(α),

and thus, we get R in Eq. (2.72).

Once we know everything into the expressions of the Bogoliubov coefficients (2.73),

we can use them to find the EE (2.81) using the relation (2.80), and also the Tsallis and

Rènyi entropies (2.82). As mentioned before, we will check if the temperature (2.79) and

the parameter Q (2.80) are good measurements of the quantumness of a system with some

of our models.

3.4 Quantum Entanglement and the Classical Phase

Space

An unexpected property of the EE (2.81) was found including the expressions of

the Bogoliubov coefficients (2.73) into it. Particularly, I get

cosh2(r) = 1
1 − q2 =



(
1
R

+R|ω|
)2

+
.
R2

4|ω|
, if ω2 ≥ 0

−
1

R2 +
(
R|ω| −

.
R2
)2

4|ω|R
.
R

, if ω2 < 0

, (3.12)

which is of relevant importance to infer the form of the EE.

As we know from Classical Mechanics, the turning points of a system are obtained as

those for which the kinetic energy vanishes and the potential energy arrives at a maximum,
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and it is also true for the expectation values of quantum systems. In our case, the potential

energy of the WDW equation (2.53) is given by Eq. (3.11), whose right hand side can

be positive or negative. There are points along the evolution of the universe where the

frequency vanishes. At those points, the universe arrives to a turning point, like a classical

maximum or a minimum. The EE at the turning points is divergent since Eq. (3.12)

diverges when ω2(α) = 0.

Furthermore, the phase space is then divided in two regions classically: where the

system can be found because it is classically allowed, or where it cannot be because it is

forbidden. Quantumly, we have found that when ω2(α) > 0, the EE is a positive real, and

when ω2(α) < 0, the value of cosh2(r) is negative, and therefore the EE (2.81) is not real,

since Ln(−|x|) = ln(x) + iπ [115]. I can summarise it as:

SN(α) =



R+∗, if ω2 > 0 (Classically Allowed)

∞, if ω2 = 0 (Turning Point)

R+∗ + iπ, if ω2 < 0 (Classically Forbidden)

. (3.13)

This classification is really unexpected since the EE is a purely quantum property

of a system. Nevertheless, here it appears to offer the same classification as the classical

logic. The turning points also emerge from the analysis of the EE even when, typically,

every classical barrier, like a finite potential barrier, does not have the same behaviour in

quantum regimes, so they stop behaving like barriers, but damping regions. It is even more

unexpected when one realises that the theory does not include any process of decoherence

[116].

3.5 A General Two-Dimensional Minisuperspace

As the first model, I consider a closed universe without cosmological constant filled

with a non-interacting massless scalar field. The WDW equation for fixed modes (2.62) is

a very simple one as [
∂2

∂α2 + k2 − e4α

]
φk(α) = 0, (3.14)
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Figure 3.1: Entanglement entropy (blue surface) and the temperature of entan-

glement (orange surface) vs. the scale factor a and the scalar field ϕ of a pair of

closed universes, with Λ = 0, Eϕ = 1, and σ = 1. Both are finite close to the

initial singularity at a = 0. The entanglement entropy diverges as the universe

approaches its maximum of expansion at a = 1. However, the temperature

remains finite everywhere. Both show a wavy behaviour along the ϕ-axis. The

temperature has been multiplied by 1/5 to get it into frame.

whose solutions can be found analytically as

φ
(1,2)
k (α) ∝ I±ik

(
e2α

2

)
, (3.15)

where Iν(z) is the modified Bessel function of the first kind. Notwithstanding, it is very

unlikely that looking for solutions of (2.62) yields those ones such that they satisfy the

condition (2.63). Then, in general, there is no other way but to use a numerical method

including such a boundary condition.

Following the algorithm described in Section 3.3, I set σ = 1 for the distribution

function (3.9), and Eϕ = 1. Then, the wave function is found numerically. Its real

and imaginary parts are used as inputs for finding the parameter R in Eq. (2.72), and,

recognizing

ω2(α) = Eϕ − e4α, (3.16)
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I directly calculate the EE at any point of the phase space. The numerical outcome is

shown in Figure 3.1 as the blue surface. The temperature of entanglement (2.79) is shown

in orange as well in Figure 3.1 for comparison. The EE behaves as discussed in Section

3.4. It diverges close to the maximum of expansion, which is expected at a = 1 for this

specific model. Its unknown shape at the origin is now found to be finite even though the

quantumness of the universe is understood to be high at the very beginning, which is not

contradictory. Nevertheless, the EE is decreasing with the scale factor after the initial

singularity. The early behaviour appears to be a very intriguing detail about the EE. The

temperature of entanglement is, however, finite everywhere. Also, for both of them, there

is a wavy behaviour along the ϕ-axis whose frequencies coincide. Changing the values Eϕ

and σ only changes the maximum of expansion and the frequency of the wavy form of

those functions. A fast analysis of the Tsallis and Rènyi entropies (2.82) shows no much

difference from the von Neumann entropy shown in the figure (a more detailed comparison

will be done in Section 3.9).

Here and in the future, I get results up to errors introduced by the numerical

method. In this case, the conclusion that both functions are finite around the origin is

just up to the numerical value we introduced. However, comparing the result with the

following ones, the precision seems to be enough and lets me infer that it is finite at the

initial singularity.

3.6 Classical and Quantum WDW Equations

A Quantum Gravity theory is created with the focus on a quantum description of

the universe as good as possible. Up to now, it has been the case. We have treated the

variables of the minisuperspace as quantum variables whose momenta have been quantized.

The quantum treatment has been extensively used [38, 53, 76, 77]. In spite of that, the ease

to get solutions of different scalar field, whose potential and interactions are non-trivial,

is eroded. It is the reason why the scalar field is kept classical while the scale factor is

quantized in some studies [111, 117, 118]. How both treatments make a difference has
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been analyzed for FLRW universes and many other models [119, 120].

The WDW equation (2.52) is the Hamiltonian constraint where the scalar field has

been treated as quantum. For that case, we can say that the corresponding solution is the

wave function ΨQ(α, ϕ), where the label Q stands for quantum. But, from the Hamiltonian

(2.49), one can write the WDW equation just quantizing the scale factor and keeping the

scalar field classical as [121]

{
∂2

∂α2 − e4αk + e6α

[
Λ
3 + 2ρ(α, ω)

]}
ΨC(α) = 0, (3.17)

where we used the relation (2.12) to express it in terms of the density of the scalar field

given as [25]

ρ(α, ω) = ρoe−3α(1+ω), (3.18)

where ρo is the density at a certain time and ω is the barotropic parameter assuming that

the equation of state of the scalar field is p = ωρ. The label C of the wave function in Eq.

(3.17) stands for classical. The first important difference between Eq. (2.53) and (3.17) is

that the solutions depend on a different number of variables, although the impact on the

EE is not very revealing yet. Presume that the outcomes will be different is misleading

ourselves.

It is important to notice that the normalization of the solutions from Eq. (3.17)

cannot be obtained from (2.63) since the variable ϕ has been moved into a classical

degree of freedom. Nevertheless, the normalization is irrelevant for qualitative results.

All divergences will not be regularized, so they are going to be there no matter the

normalization we use, and all finite points are going to remain finite. For us, it suffices

our requirements in order to study, at least, the qualitative behaviour of the EE.

I analyze in the following some cases centering my attention to the implications of

those two different treatments on the EE of a pair universes as I have been doing until

this point. That is, the questions to solve are: how the different cases have an impact on

the EE? Are they equivalent?
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3.6.1 Stiff Matter Dominated Universes

The first case is the trivial one: a pair of flat universes which are filled just with

stiff matter [122, 123]. The equation of state for this peculiar fluid reduces to p = ρ. The

energy of the scalar field is just kinetic, it is, V (ϕ) = 0.

Attending to the formalism with quantized scalar field, the mass (2.54) vanishes,

and the WDW equation (2.53) is simplified as[
∂2

∂α2 − ∂2

∂ϕ2

]
ΨQ(α, ϕ) = 0. (3.19)

For the alternative WDW equation (3.17), I get[
∂2

∂α2 + 2ρo

]
ΨC(α) = 0. (3.20)

The solutions to Eq. (3.19) are

ΨQ(α, ϕ) ∝ ei
√

Eϕ(α±ϕ), (3.21)

which is a two-dimensional plane wave, and the solutions to Eq. (3.20) are

ΨC(α, ϕ) ∝ e±i
√

2ρoα, (3.22)

which is another plane wave but one-dimensional. These results could have been expected

after a careful glance at Eqs. (3.19) and (3.20) with the relation (2.59), since they are

differential equations equivalent to the time-independent harmonic oscillator. Therefore,

the vacuum state in which we describe the pair of universes will be the same at any point

of their evolution, hence the EE is everywhere vanishing.

If one tries to get an everywhere vanishing EE with the algorithm in Section 3.3, the

right normalization (2.63) must be taken, otherwise the EE is constant everywhere. This

shows up that the right normalization is necessary to get correct results in our calculations.

The pair of stiff matter dominated universes appears to be the trivial case where

the EE vanishes. The quantum correlations between the pair are always inexistent. That is

why it looks the most simple system to work with in case one wants to avoid entanglement

in the multiverse.
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Figure 3.2: Qualitative form of the entanglement entropy of a pair of de Sitter

universes. The EE is decreasing as the universe grows, and it decreases faster

as the cosmological constant increases.

3.6.2 de Sitter Spacetimes

The second most interesting case I find is the pair of de Sitter universes. Those are

flat universes with a positive cosmological constant Λ [25], or a scalar field which follows

the equation of state p = −ρ. The energy is just potential, it is V (ϕ) ̸= 0, and
.
ϕ = 0.

Whether the repulsive dynamics of the de Sitter universe is given by a cosmological

constant or a scalar field is not generally relevant for cosmological purposes. However, here

one needs to point out that the uncertainty principle plays an important role in de Sitter

universes when it is a quantum scalar field whose kinetic energy has been fixed as
.
ϕ = 0,

the one contributing to the matter content. I will elude the debate and the implications

of it, and consider that the nature of the cosmological constant is a scalar field whose

potential energy is constant, as we described.

The WDW equations (2.53) and (3.17) become identical:[
∂2

∂α2 + e6α Λ
3

]
Ψ(α) = 0, (3.23)
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where Λ = 6ρ. The solutions are

Ψ1(α) ∝ J0

1
3

√
Λ
3 e3α

 , Ψ2(α) ∝ Y0

1
3

√
Λ
3 e3α

 . (3.24)

where Jν(z) and Yν(z) are Bessel functions of the first and second kind, respectively. Both

functions are real, so I can use them as inputs for the parameter R in Eq. (2.72). The

normalization of those wave functions can be ignored to get a qualitative result of the

EE. Thus, I get the EE (2.81) in terms of the scale factor and the cosmological constant,

which is shown in Figure 3.2. There, we find that the EE is a monotonically decreasing

function after the initial singularity. The cosmological constant looks like if it is the control

parameter of the decoherence since the EE gets diluted as fast as the cosmological constant

grows.

The pair of de Sitter universes came out to be the one whose EE is identical

independently of the treatment of the scalar field, but it is not as trivial as the stiff matter

dominated universes of Section (3.6.1).

3.6.3 A General Case

After the two most simple and important cases, a general one is studied where the

difference is perfectly seen. For our purpose, I do not need to find the EE everywhere,

but to check that there are differences on the treatment. In order to do so, I analyse the

behaviour of the EE very close to the initial singularity.

The case that matters is a pair of closed universes with some potential V (ϕ). For

such case, there is not, in general, analytical solution to the WDW equation (2.53), or

a perfect analogy between the classical and the quantum systems, but it is possible to

find numerical solutions and study the asymptotic behaviour at early times. The WDW

equations (2.53) and (3.17) are for the model:[
∂2

∂α2 − ∂2

∂ϕ2 − e4α + 2V (ϕ)e6α

]
ΨQ(α) = 0, (3.25)

and [
∂2

∂α2 − e4α + 2ρoe3α(1−ω)
]

ΨC(α) = 0, (3.26)
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Figure 3.3: Entanglement entropy of a pair of universes in a general case given

by WDW equation (3.26) with ρo = 1/2. The series of peak chains of the image

are caused of the numerical method and the rapidly varying wave functions, so

the image must be considered smooth everywhere. Thus, the EE is divergent

at the initial singularity and decreases as the universe expands, the faster the

decrease the bigger is the parameter ω.

respectively. Here I used the relation (3.18). We can be safe studying the classical case

with the barotropic parameter ω into the interval [−1, 1] since

ω = p

ρ
=

.
ϕ2/2 − V (ϕ).
ϕ2/2 + V (ϕ)

, (3.27)

and we assume that the kinetic energy of the field is always positive. This is rather general

even if we do not know the form of V (ϕ).

First, let me start choosing ρo = 1/2 and finding the numerical solutions to the

WDW equation (3.26) for different values of ω ∈ [−1, 1] fulfilling the boundary condition

(2.63). The EE is calculated taking the real and the imaginary part of the first solution

we obtain. We depicted it in Figure 3.3. The numerical method includes derivatives of

the wave function, that at some points is rapidly varying. It induces some numerical

imperfections on the surface and must be taken away. Apart from that, the EE is divergent

at the initial singularity and decreases as the universe expands. Again, the parameter ω
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Figure 3.4: Entanglement entropy of a pair of universes in a general case given

by WDW equation (3.25). This plot is equivalent to the one I should have

obtained just in the region very close to the initial singularity, where the EE

is finite everywhere. Exactly, this plot corresponds to a closed universe with a

massless scalar field whose maximum is at a = 1, almost identical to the one

found in Section 3.5.

seems to control how fast the EE decreases, being steeper as the parameter ω grows.

In the case of the quantized scalar field, the WDW equation (3.25) cannot be solved

unless the shape of the potential V (ϕ) is known. However, at the very early times, the last

term into the brackets can be neglected. After the approximation, I obtain the solutions

Ψ(α, ϕ) ∝ I
±i

√
Eϕ

2

[1
2e2α

]
e±i

√
Eϕϕ, (3.28)

applying the separation as in Eqs. (2.59). Ignoring the normalization, the EE is calculated

and shown in Figure 3.4. This plot is therefore just valid for comparison with Figure

3.3 at very early times, since it corresponds to the case studied previously in Section

3.5, but the distribution function has been taken as4 A(k) = δ(k − Eϕ), for simplicity.

The approximation is enough to prove what I wanted, since the EE is finite at those
4This distribution, for it to be symmetric around k = 0, is A(k) = δ(k − Eϕ) + δ(k + Eϕ), but since I

integrate from 0 to ∞, the result is the same.
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early times. In comparison to what it was found for the classical treatment, that was a

divergent behaviour, one can check that it makes the difference, at least close to the initial

singularity.

The conclusion is that there is a difference touching the treatment of the scalar

field. Its quantization works like a regulator of the quantum correlations at the beginning

of the universe, hence the EE gets finite values, while for the classical treatment we find a

divergent EE. Besides, there are singular models, as we studied in Sections 3.6.1 and 3.6.2

for which the EE is independent of how we treat the scalar field.

3.7 Oscillating Universes

In light of the results from previous sections, the EE is divergent at the maximum

of the expansion of the universe. To know whether the same happens at any other critical

points is the aim of this section. I study the EE at any kind of critical points, not just

at maxima as seen in Section 3.5, but using a classical treatment of the scalar field. I

consider the case of a pair of universes whose dynamics is described by a perfect sine,

where there are maxima, minima, and inflection points. The content of the universe was

analyzed in Ref. [124], and similarly to this one, it has been studied in many different

studies [125–131].

In the aforementioned model, the universes contain wall-like matter, string-like

matter, and a negative cosmological constant (for details about the non-standard matter

go through Ref. [132]). The specific evolution of the universe I consider is

a(t) = − 3
2Λ

A sin
√−Λ

3 t
+ Cw

 , (3.29)

where

Cw > A =
√
C2

w + 4
3Λk′, (3.30)

is the constant density parameter due to wall-like matter, we define k′ = k −Cs, and Cs is

the constant density parameter due to string-like matter. The minima and the maxima of
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Figure 3.5: Classical evolution (3.30) of an oscillating closed universe with

Λ = −1, Cs = 0.1, and Cw = 2. Here, I highlight the maximum, the minimum,

and the inflection point as a+, a−, and aip, respectively.

the evolution are located at

a± = − 3
2Λ(±A+ Cw). (3.31)

The Friedmann equation, whose solution is (3.30) as desired, is

H2 = Λ
3 + Cw

a
− k′

a2 , (3.32)

that comes from the Lagrangian

L = 1
2

∫
dNa3

[
H2

N2 − Λ
3 − Cw

a
+ k′

a2

]
, (3.33)

where N is the lapse function, selected to be N = 1 in order to recover (3.32). The

corresponding Hamiltonian to this Lagrangian is

H = −p2
a

a
− k′a+ Cwa

2 + Λ
3 a

3. (3.34)

Once I get the Hamiltonian, the quantization of the momentum pa yields, following

the same steps as in Section 2.2.2, the WDW equation[
∂2

∂α2 − k′e4α + Cwe5α + Λ
3 e6α

]
Ψ(α) = 0. (3.35)



CHAPTER 3. QUANTUM ENTANGLEMENT OF A PAIR... 58

Figure 3.6: Entanglement entropy of an oscillating closed universe with Λ = −1,

Cs = 0.1, and Cw = 2. Here I highlight the maximum, the minimum and the

inflection point as a+, a− and aip, respectively. The black line is the real part

of the EE, and the red one is its imaginary part.

Here one notices that the scalar field has been considered classically and the densities of

each kind of matter has been included into the density term in Eq. (3.17).

In order to find the EE, we need two real solutions of Eq. (3.35). It is not possible

to do it analytically, so I find numerical solutions imposing as boundary condition the

solution in the asymptotic region α → −∞:

Ψ(1)(α) ∝ I0

[√
k′

2 e2α

]
, Ψ(2)(α) ∝ K0

[√
k′

2 e2α

]
, (3.36)

where the two last terms into the brackets in Eq. (3.35) are suppressed. Here Iν(z) and

Kν(z) are modified Bessel functions of the first and the second kind, respectively. With

the values Λ = −1, Cs = 0.1, and Cw = 2, a closed universe evolves like (3.29), which is

shown in Figure 3.5. The inflection point has been labeled as aip. For those parameters,

the outcome of the EE is in Figure 3.6. It is the first time we explicitly draw the imaginary

part of the EE, which is the red line. The black line is the real part. As commented in

Section 3.4, the EE is real in the classically allowed region, which is between a− and a+,

but also in the region from a = 0 to a− [124]. The latter case is not useful for us as there

is not a minimum at a ̸= 0 as it is in a−. From a+ on, it is not accessible classically, so
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Figure 3.7: Temperature of entanglement, in black, and the parameter Q, in

red, of an oscillating closed universe with Λ = −1, Cs = 0.1, and Cw = 2. The

temperature has been multiplied by 1/10 to fit it into frame.

the EE contains an imaginary part with the value of π.

Besides, the EE is divergent at the critical points a− and a+, but it is still finite at

the inflection point. Also, at a = 0, one confirms that since the fields are not quantized,

the EE diverges as inferred in Section 3.6.3. Then, apart from the initial singularity, the

EE diverges where the Hubble parameter H = .
a/a vanishes.

Finally, taking advantage of this useful and simple model, I calculate the temperature

of entanglement (2.79) and the parameter Q (2.80). The results are in Figure 3.7. The

parameter Q has a shape which coincides with the EE, being equal to one at the divergences

of the EE, while the temperature is still finite everywhere. Considering the von Neumann

entropy as the right measurement of the quantumness of a system, one does not get a good

impression from the temperature to be a valuable quantity to measure the quantumness

as it was suggested in Ref. [111].
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Table 3.1: Classification of exotic singularities using the definitions of Tipler and Królak.

3.8 Exotic Singularities

Once I have studied what happen with the EE of a pair of universes at their

origin, at critical points and inflection points, one could wonder: how does it behave at

exotic singularities? Those kind of singularities are nonstandard [133–136] ones where the

scalar field gets different values from the standard singularity in General Relativity, where

pressure and density blow up.

A summarize of those exotic singularities is done in Table 3.1 [134, 137]. There

we explain the name and its classification in types, the time t at which each singularities

occurs and the value of the scale factor a at that time t. Also, the density, the pressure,

the slope of the pressure and the quotient w = p/ρ. Finally, we present the classification

of these singularities using the definitions of Tipler [138] and Królak [139], where the

singularities are called strong if, in general, some components of the tensors

(T)I i
j(τ) =

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′

∣∣∣Ri
ajbu

aub
∣∣∣, (K)I i

j(τ) =
∫ τ

0
dτ ′
∣∣∣Ri

ajbu
aub

∣∣∣, (3.37)

diverge, respectively, at τ = τs, where τ is the proper time and τs is the moment where

the singularity appears, or weak, in general, if all the components are finite at any time.

Among them, I will focus on four different types. I have already analyzed the type

0 singularity which is the Big Bang singularity, so the first one is the type IIa singularity

or Big Brake [140–142], where the density vanishes and the pressure diverges. The second

one will be the type IIIa singularity or Big Freeze [143, 144], where pressure and density

diverge, but at a finite time τs. The third type will be the type IV singularity or Big
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Separation [145], for which the pressure and density vanish at some τ = τs. And the

last one which is a type Il singularity called Little Rip [146], where pressure and density

diverge asymptotically, after an infinite period of time in the future.

3.8.1 Type IIa Singularity – Big Brake

The type IIa singularity called Big Brake belongs to the class of Sudden Future

Singularity and it can be reproduced in a flat FLRW universe filled with a scalar field

whose equation of state goes like

p = − A

ρβ
, (3.38)

which is the one of a generalized Chaplygin gas [147], where A < 0 is a constant, and as

an example, we take β = 1.

The expression of the density in terms of the scale factor is

ρ =
√
B

a6 − A, (3.39)

where B > 0. That way, the density vanishes at as = a(ts) = (B/A)1/6, where ts is the

time at which the singularity is found. The classical evolution of a universe like this starts

at a = 0, then expands, and has a turning point at as. Thus,

.
a(ts) = 0, ..

a(ts) → −∞,
A

p(ts)
= ρ(ts) → 0. (3.40)

The WDW equation (3.17) can be adapted to this case replacing the density (3.40)

and setting Λ = 0 and k = 0. The boundary condition I use is again to fix the solution to

the asymptotic one obtained at α → −∞, where ρ ∼
√
Be−3α, which are

Ψ(1)(α) = J0

[√
8B1/4

3 e3t/2
]
, Ψ(1)(α) = Y0

[√
8B1/4

3 e3t/2
]
, (3.41)

where Jν(z) and Yν(z) are Bessel functions of the first and second kind, respectively.

Using those functions to obtain the global solutions to (3.17), the EE was calculated,

with B = −A = 1, and it is shown in Figure 3.8. There, the real part of the EE is

drawn in black, and the imaginary part in red. Besides, I added the temperature in blue,
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Figure 3.8: The real part of the entanglement entropy, in black, its imaginary

part, in red, and the temperature of entanglement, in blue, of a flat universe with

a scalar field whose equation of state is (3.40). Here: β = 1, B = −A = 1. The

EE diverges at the initial singularity and at the Big Brake singularity located

at as = 1. The temperature has been multiplied by 5 to fit in the frame.

multiplied by a factor of 5, for comparison. As expected, the EE diverges at a = 0 since

the scalar field is still classical, and since .
a(ts) = 0 at the Big Brake singularity, i. e., at

as = 1, the EE is divergent. The temperature does not reproduce any of the expected

quantum properties since it is kept finite everywhere and any point along the evolution of

the universe, not even the initial singularity, gains special importance. The conclusion

is the same as in Section 3.7: the temperature seems not to be a good measurement of

the quantumness of a bipartite system like ours, considering the von Neumann entropy to

be the correct way. It is important to point out that here the EE may be divergent due

to the fact that the Hubble parameter vanishes and not because of the very singularity

by its own. What we can say is that it is not regularized because of this special kind of

singularity.
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Figure 3.9: The real part of the entanglement entropy, in black, its imaginary

part, in red, and the temperature multiplied by 1/10, in blue, of a flat universe

with a scalar field whose equation of state is (3.40), with β = −2, B = −A = 1.

The Big Freeze singularity appears at as = 1, where the EE and the temperature

diverge. Both are finite everywhere, but the temperature is oscillating and

growing as the universe expands.

3.8.2 Type IIIa Singularity – Big Freeze

The type IIIa singularity called Big Freeze belongs to the class of Finite Scale Factor

Singularity and it can be given in a flat universe with a scalar field whose equation of

state is (3.40), and A < 0 and β < −1 are constant. However, in this case, the singularity

is a minimum of expansion.

The density in terms of the scale factor is

ρ = |A|1/(1+β)
[(
as

a

)3(1+β)
− 1

]1/(1+β)

, (3.42)

where

as = a(ts) =
∣∣∣∣BA
∣∣∣∣1/3(1+β)

, (3.43)

is the minimum size of the universe and B is a constant of integration. The Big Freeze

singularity at as has the properties

ρ(ts), p(ts) → ∞,
.
a(ts) → 0. (3.44)
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Using the WDW equation (3.17) with the same boundary condition procedure as in

the previous Section (3.8.1), I get the EE which is shown, together with the temperature of

entanglement, in Figure 3.9. I used the values B = −A = 1 and β = −2, for which the Big

Freeze singularity is located at as = 1. There, the real part of the EE is drawn in black, its

imaginary part in red, and the temperature in blue. As for this model the universe expands

forever, there is no maximum, so the only interesting point is the singularity at as = 1,

for which the EE and the temperature diverges. For the latter times, the EE remains

finite and oscillating, while the temperature oscillates with peaks which are increasing

as the universe expands. The temperature is again behaving against the logic, since the

entanglement disappears as the universe increases. Again, the divergent behaviour cannot

be explained uniquely because of the exotic singularity, but because the Hubble parameter

vanishes, so the only thing we can say is that it is not finite because of the new properties

of the singular point.

3.8.3 Type IV Singularity – Big Separation

A type IV singularity named Big Separation is found in a universe with a scalar

field whose equation of state is (3.40) and whose density is given by (3.42) with B > 0 and

β ∈ [−1/2, 0). The singularity is then a maximum of expansion at as as in (3.43). There

p(ts), ρ(ts) = 0, .
a(ts) = 0. (3.45)

Following the same steps as before, the EE and the temperature of entanglement

are calculated and depicted in Figure 3.10. We do not find too many differences between

those functions and the ones in Figure 3.8 for a Big Brake. At the initial singularity and

at the Big Separation, the EE diverges while the temperature is kept finite everywhere,

showing once more that it seems to give no information about the quantum state of the

universe. Once more, as in the previous cases, we cannot state anything about the nature

of the divergent behaviour of the EE due to the exotic singularity, but due to the Hubble

parameter.



65 3.8. EXOTIC SINGULARITIES

Figure 3.10: In black, the real part of the entanglement entropy, in red, its

imaginary part, and in blue, the temperature of entanglement multiplied by 10.

The EE diverges at a = 0 and at the Big Separation singularity at as = 1. The

temperature is finite everywhere. Here, β = −1/2, and B = −A = 1.

3.8.4 Type Il Singularity – Little Rip

A flat universe with a Little Rip singularity appears when a scalar field with

equation of state

p = −ρ− A
√
ρ < 0, (3.46)

fills it. Here, A > 0 is a constant. The density is hence following the relation

ρ = ρo

[
3A

2√
ρo

ln
(
a

ao

)
+ 1

]2

, (3.47)

in terms of the scale factor, where ρo and ao are constants of integration accounting for

the value of the density and the scale factor at a certain time, respectively.

The point under study is

as = aoe− 2√
ρo

3A , (3.48)

where the density vanishes. Introducing (3.47) into (3.17), one finds that the frequency

ω2(α) in the WDW equation is proportional to ρ, therefore the EE is also expected to

diverge there. The boundary condition is obtained as we proceeded in the last sections,
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and the outcome is shown in Figure 3.11 together with the temperature of entanglement

and the parameter Q, which is introduced here for completion.

Figure 3.11: The real part of the entanglement entropy in black, its imaginary

part in red, the temperature of entanglement multiplied by 1/20 in blue, and

the parameter Q in orange. The EE diverges at the initial singularity, and at

the Little Rip singularity located at as = e−1. Elsewhere, it remains finite. The

parameter Q behaves everywhere as the EE, but it is equal to one when the

EE diverges. The temperature is finite but increasing, while it oscillates as the

universe gets bigger.

The EE diverges at a = 0 and at the Little Rip singularity as as expected, and it

remains finite at any other point. The parameter Q is also following the shape of the EE,

being equal to one when the EE diverges. The temperature, however, is equal to one last

time diverging for late times but finite at any finite time, not following a proper behaviour.

Let me remark that this model is the first one which serves as an example where the EE

diverges for noncritical points.
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PARAMETER

3.9 Relation of the Entanglement with the Hubble

Parameter

After the analysis of all those models in previous sections, we concluded that the

dependence of the EE on the Hubble parameter is the important EE characteristic, since

the EE is divergent everywhere when H = .
a/a = 0. It is then interesting to find its

relation to the critical points of the classical evolution of the universe.

For such a task, I consider the case of a closed universe filled with a scalar field

whose spectrum is A(k) = δ(k − 1). The WDW equation (2.62) is then

[
∂2

∂α2 + 1 − e4α

]
Ψ(α) = 0, (3.49)

whose solutions are

Ψ(α) = I± i
2

[
e2α

2

]
. (3.50)

Taking the real and the imaginary part of any of them as inputs for R (2.72), the EE

given by the von Neumann entropy (2.81), and the Tsallis and Rènyi entropies (2.82),

are calculated. They are shown in Figure 3.12 from which we can see that the overall

behaviours are similar. The von Neumann entropy is drawn in blue, while the Renyi (red)

and Tsallis (black) entropies are the solid ones with q = 1.5, and the dotted ones with

q = 0.7.

At a = 1, where the model gets a classical maximum of expansion, all entropies

diverge. There is no problem for the generalized entropies to diverge to negative values

since they are not bounded from below as the von Neumann one. Any kind of divergence

denotes a high quantumness at the point. It is also interesting to notice that they are all

finite at a = 0, where the initial singularity takes place, i. e., when the quantization of the

scalar field regularizes also the generalized entropies.

Getting advantage of this very simple model, I would like to get the asymptotic

behaviour of the von Neumann entropy around the maximum at a = 1. My hope was to
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Figure 3.12: Von Neumann, Tsallis and Rènyi entropies in blue, black and red,

respectively. The solid lines and dotted lines are for the parameters q = 1.5 and

q = 0.7, respectively, of the Tsallis and Rènyi entropies. A very similar form is

obtained for all of them. They are finite at the initial singularity and diverge at

the maximum of expansion.

get an asymptotic form like

SN(H) ∼ 1
H2 , (3.51)

in order to relate it to the entropy of gravitational horizons, like Hubble or black hole

horizons [148]. Unluckily, after fitting some of the points close to the maximum to a

function like

SN(H) = co + c1

H
+ c2

H2 + c3

H3 , (3.52)

where the expected condition was c2 ≫ co, c1, c3, I found the blue line in Figure 3.13 which

is not a very good fit since the exact entropy is the black line. It turned out that the von

Neumann entropy fits almost perfectly, with goodness coefficient r2 ∼ 1, to

SN(H) = co − c1 ln(H), (3.53)

with c1 ≈ 1. Since co is up to the normalization of the wave functions, then one can say

that SN ∼ − ln(H) ∼ I(H), where I(H) is the Shannon information content [149]. The

fit is also in Figure 3.13 in red.

Finally, I also wanted to show if the logarithmic shape also holds for the extended

entropies (2.82). The fits to the Tsallis and Rènyi entropies are in Figure 3.14. In it, the
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Figure 3.13: The von Neumann entropy (black), and its fits (3.52) and (3.53) in

blue and red, respectively.

solid lines show the Rènyi (black) and Tsallis (blue) entropies in terms of H for q = 0.7,

and their fits in red and green, respectively. The dotted lines show the absolute values of

the Rènyi (black) and Tsallis (blue) entropies for q = 1.5, and their fits in red and green,

respectively. It looks that the Tsallis entropy does not fit as well as the others to the

logarithmic shape.

3.10 Decoherence and Our Hypothetical Twin

This chapter up to here has been dedicated to study the theoretical aspects of the

EE of a pair of universes. I have gone into different models and some general conclusions

have been obtained. It was done for the ideal situation in which no other interaction is

possible in the multiverse. A more realistic scenario should not be so naive and it would

include interactions with other universes or any other entities. They would play the role

of an environment, whose quantum properties decohere and all crossed interactions tend

to disappear [116, 150]. This is the customary scenario of a highly interacting theory.

In the hypothetical case in which our universe was born at the same time as a twin,

the interaction between them would only affect to the very early times, since the dynamics
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Figure 3.14: Extended entropies and their fits. The solid lines show the Rènyi

(black) and Tsallis (blue) entropies in terms of H for q = 0.7, and their fits in

red and green, respectively. The dotted lines show the absolute values of the

Rènyi (black) and Tsallis (blue) entropies for q = 1.5, and their fits in red and

green, respectively.

of our universe can be (almost) recovered using a classical theory of gravity as General

Relativity. Our universe has never been in a critical point [25], and inflection points are

not quantumly relevant, which is sad because our universe has just gone through one

of those when dark energy started to dominate our present universe, so decoherence is

expected to constantly dilute any other clue of a twin universe. The question whether our

twin universe exists or not is almost impossible to answer yet. The only window we have

to check its existence is the Cosmic Microwave Background (CMB) at its low multipoles,

or future experiments able to go deep into the very early stages of our universe, as the

spectrum of primordial gravitational waves. Even if the expectation of discovering it is

low in the close future, I will dedicate next Chapter to find the imprints on the CMB of

the interaction with our lost twin.



4
Falsiying the Multiverse Hypothesis

4.1 Posing the Problem of Falsifiability

A physicist is not a philosopher. A physicist is the one who thinks about Nature

and the laws which describe it. A philosopher is allowed to think. About anything, even

Nature. When a physicist works, he should not be allowed to think as a philosopher.

It is not useful for us to talk about a twin universe if we are not able to detect it. In

case it exists, the situation is equivalent to as if it does not exist at all. However, it is

a physicist job to check when a theory can be falsifiable, and keep thinking constantly

whether a metaphysical theory is really metaphysical or not. Our methodology is based

on the approach by Popper [151] that any esoteric theory is falsifiable if it contains a

predictive result of an experiment to verify if such theory is correct.

The idea of a twin universe is somewhat abstract and may look irrelevant for a

physicist. But we have checked that in the representation in which the number of universes

71
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remains constant, which is a very natural one, the EE is, in general, unavoidable, and

there must be signs into our universe about it. In this chapter, I use what we have learnt

about the quantum relation of the pair in order to impose a heuristic interaction between

them, and extract the hints our twin could have left in the spectrum of the CMB [152].

The angular spectrum of the CMB, which is directly measured with high resolution by

Planck satellite [12, 153], is what I consider here to be the first good indicator of a theory

which modifies the earliest period of the universe. Also, the reason to use a heuristic

interaction is that we have no clue about the way they are intermingled.

From the Chapter 3, we concluded that the EE is directly related to the Hubble

parameter, such that

lim
H→0

[
SN(a,H)

]
→ ∞. (4.1)

It is not intrinsic from the diagonal part of a Hamiltonian (2.68) to see any entanglement

but from the interaction terms, therefore, a system which fulfills the condition (4.1), is

also subjected to the condition

lim
H→0

[Hint(a,H)] → ∞. (4.2)

Besides, we can impose a new condition related to the formation of universes [154] via

the decay of a false vacuum state. The formation of bubbles is exemplified through the

Coleman-DeLuccia potential [155], which is an almost-symmetric quartic potential like a

slightly damaged Mexican hat, containing two minima with different altitudes in which

quantum tunneling is allowed. One of those minima is the true vacuum, for which the

energy is a global minimum, and the other one is the false vacuum, with the possibility

for transition to the real vacuum state. Such a jump, which occurs locally in the space

we settle everything, is effectively the creation of bubbles of true vacuum in a sea of false

vacuum.

Let us consider the simplest interaction between a set of universes {Ψi}, which

depend only on the scale factor, as the one-to-one interaction

Hint =
N∑

n=1
aλ2(a) (Ψn+1 − Ψn)∗ (Ψn+1 − Ψn) , (4.3)

similar to a nearest neighbour interaction, with periodic boundary conditions Ψ0 = ΨN+1,

where N is the number of universes, and λ2(a) is an unknown coupling function. It was
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found for this case [154] that the probability of the false vacuum to decay goes like

Γ ∝ e−B, with B ∝
[
a4

λ2(a)

]3

. (4.4)

It is then necessary that

lim
a→∞

[Γ] → 0, (4.5)

which implies that λ2(a) is a function which is smaller than a4 for large enough values of

a. The effects on the CMB of a large amount of universes in the multiverse interacting

as in Eq. (4.3) has been calculated [20], but the results are not useful for us since our

interaction is only between a pair of universes and the coupling function λ2(a) is also

dependent on the Hubble parameter as I demanded previously. However, the condition

(4.5) holds after one changes λ2(a) to λ2(a,H) in Eqs. (4.4).

A good question with a hard answer arises: what is the shape of the coupling

function λ2(a,H)? In principle, it is impossible to know. The only thing we know is that

it should fulfill the conditions (4.1) and (4.5). In the next section, I will introduce an

example for it.

4.2 Modeling the Pair Interaction

The mathematical setup is following an outline whose aim is to obtain the equation

of motion of the universe in time, it is the modified Friedmann equation, containing an

extra term due to the interaction of the pair. In order to get to that point, I write the

Hamiltonian of each universe, and then build the total Hamiltonian of both universes by

adding the term of interaction.

Let us start then by writing the Lagrangian of a single flat FLRW universe with a

scalar field and its mode perturbations {vk} in term of the conformal time dη = dt/a(t)

[20, 156, 157]:

L = 1
2

[
−(a′)2 + a2(ϕ′)2 − 2a4V (ϕ) +

∑
k

(v′
kv

∗′

k + ω2
kvkv

∗
k)
]
, (4.6)
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where the prime denotes the derivative with respect to the conformal time, and the

frequency

ω2
k = k2 − z′′

z
, z = a

ϕ′

H
, (4.7)

and H = a′/a. The mode perturbations {vk} of the scalar field are the solutions of the

Mukhanov-Sasaki equation [158]

v′′
k +

(
k2 + z′′

z

)
vk = 0. (4.8)

The conjugated momenta from (4.6) are

pa = −a′, pϕ = a2ϕ′, pvk
= v∗′

k . (4.9)

Thus, the Hamiltonian reads

H = 1
2

[
−p2

a + 2a4ρ(ϕ) +
∑

k

(
pvk
pv∗

k
− ω2

kvkv
∗
k

)]
, (4.10)

where we keep the scalar field as classical whose energy density is given by Eq. (2.12). The

corresponding WDW equation is found after the quantization of the operators (2.40) as[
1
a

∂

∂a

(
a
∂

∂a

)
+ 2a4ρ(ϕ) +

∑
k

(
− ∂2

∂v2
k

+ ω2
kv

2
k

)]
Ψ(a, {vk}) = 0, (4.11)

where the wave function of the universe is a function of the scale factor and the perturbations

of the scalar field.

In order to create the third quantized scenario, I look for the action whose equation

of motion for a certain field Ψ† is given by Eq. (4.11), and reads

S3Q =
∫

da
∏
k

dvka

[
−∂Ψ∗

∂a

∂Ψ
∂a

+ 2a4ρ(ϕ)Ψ∗Ψ +
∑

k

(
∂Ψ∗

∂vk

∂Ψ
∂vk

+ ω2
kv

2
kΨ∗Ψ

)]
. (4.12)

Hence, the associated momentum to the universe is

PΨ = −a∂Ψ
∂a

, (4.13)

with which I get the third quantized Hamiltonian of each single universe as

H3Q = a

[
− 1
a2PΨPΨ∗ − 2a4ρ(ϕ)Ψ∗Ψ −

∑
k

(
∂Ψ∗

∂vk

∂Ψ
∂vk

+ ω2
kv

2
kΨ∗Ψ

)]
. (4.14)
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The total Hamiltonian is then constructed as the sum of each individual contribution

and the interaction:

Hpair = H
(1)
3Q +H

(2)
3Q − aλ2(a,H)(Ψ2 − Ψ1)∗(Ψ2 − Ψ1), (4.15)

where the interaction has been taken as in Eq. (4.3), and H(i)
3Q is the Hamiltonian (4.14) for

each single universe. Even this equation is familiar and quite elegant, it is convenient to

play a bit with it since a brutal simplification can alleviate some future tricky calculations.

The simplification starts by taking a mode expansion of the wave function and its

momentum like

Ψj = 1√
N

∑
K

exp
{

−2πiKj
N

}
Ψ̃K , PΨj

= 1√
N

∑
K

exp
{2πiKj

N

}
P̃Ψ̃K

, (4.16)

where N is the number of samples, that in our case is just two, so it simplifies to

Ψ1,2 = 1√
2
(
Ψ̃2 ∓ Ψ̃1

)
, PΨ1,2 = 1√

2
(
P̃Ψ̃2

∓ P̃Ψ̃1

)
. (4.17)

Substitution of (4.17) into (4.15) yields

H̃pair
3Q = H̃1

3Q + H̃2
3Q − 2aλ2(a,H)Ψ̃∗

1Ψ̃1, (4.18)

which is the third quantized Hamiltonian of each mode of the total wave function, where

H̃l
3Q = a

[
− 1
a2 P̃Ψ̃l

P̃ ∗
Ψ̃l

− 2a4ρ(ϕ)Ψ̃∗
l Ψ̃l −

∑
k

(
∂Ψ̃∗

l

∂vk

∂Ψ̃l

∂vk

+ ω2
kv

2
kΨ̃∗

l Ψ̃l

)]
, (4.19)

with l = {1, 2}. Coming back to the parametrization α = ln(a), the WDW equation for

Ψ̃l is then[
e−2α ∂2

∂α2 + 2e4αρ(ϕ) − ∂2

∂v2
k

+ ω2
kv

2
k + 2λ2(a,H)δ(l − 1)

]
Ψ̃l(α, {vk}) = 0, (4.20)

where δ(x− xo) is the Dirac delta. Finally, this is the equation of motion of Ψ̃l(α, {vk}) in

which the interaction with the other universe is explicitly shown. The simplification of the

interaction term as in Eq. (4.18) shows that only one of the two modes is affected by the

interaction. There is no problem if the interaction appears for a single mode only. As we

know, the wave function can be recovered as the inverse of the mode expansion with a

certain weight for each mode. It makes completely compatible for us to be living in any of
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those two modes or a mixture of them. Let me then reduce the analysis to the affected

one l = 1. I will remove the index l from now on for that reason.

Looking at Eq. (4.20), it is obvious that the perturbations {vk}, at least, make the

problem unsolvable in general. One of the solutions to this problem is to use a semiclassical

ansatz like

Ψ̃(α, {vk}) ∝ eiS0(α)∏
k

ψk(α, {vk}), (4.21)

assuming that the {vk} are really small perturbations over a defined background whose

contribution is here given by the function S0(α). Introducing (4.21) into (4.20), we arrive

to an equation where several assumptions, and then approximations, can be done.

The first is the assumption that no backreaction appears from the perturbations, it

is, the background is only defined by the non-perturbative degrees of freedom. It implies

that the equation of motion of the background is completely independent on {vk}. Doing

that, the background dynamics is given by the Hamilton-Jacobi equation

− e−2α

(
∂S0

∂α

)2

= −2e4αρ(ϕ) − 2λ2(a,H), (4.22)

from where we recognize, coming back again to the usual scale factor, that

∂S0

∂a
= pa = −ada

dt . (4.23)

Entering this results into Eq. (4.22), one recovers the Friedmann equation

H2 = 2ρ(ϕ) + 2λ
2(a,H)
a4 , (4.24)

where the contribution of the twin universe is presented as a new term.

As for the perturbations, one could assume that the phases of the modes k are

summed incoherently, and that∣∣∣∣∣∂S0(α)
∂α

∣∣∣∣∣ ≫
∣∣∣∣∣ 1
ψk(α, {vk})

∂ψk(α, {vk})
∂α

∣∣∣∣∣. (4.25)

Repeating the argument that the perturbations do not affect the background and recog-

nizing the WKB conformal time as

∂

∂η
= −e−2α∂S0(α)

∂α

∂

∂α
, (4.26)
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one can conclude that the dynamics of the perturbations is given by

i ∂
∂η

Ψk(α, {vk}) = 1
2

[
− ∂2

∂v2
k

+ ω2
k(η)v2

k

]
Ψk(α, {vk}), (4.27)

which is the Schrodinger equation (2.14).

After those considerations I am provided with enough tools to find the spectrum of

the CMB. There is, however, another final consideration to be done. The interaction with

the other universe is here described by the term λ2(a,H) dominating at the early stages

since λ2(a,H) must be smaller than a4 to fulfill the condition (4.5). But, as explained

in Section 3.10, the entanglement and thus the interaction must be suppressed at late

times. Our model up to now has never taken into account external interactions which force

the system to undergo decoherence effects. That is why I consider that, after inflation,

inasmuch standard cosmology is recovered, the transfer functions and the dynamics are

the standard ones, abandoning the existence of our twin universe.

4.3 Observational Imprints on the CMB Spectrum

The new dynamics of the universe is at anytime ruled by Eq. (4.24), where λ2(a,H)

is a coupling function which controls the interaction and which is inevitably small compared

with the late time values of the other contributions to the Friedmann equation. The shape

of λ2(a,H) is crucial to test the existence of the multiverse. The big problem is that we

cannot know its shape in any way. I cannot do more than imposing a function which

fulfills conditions (4.1) and (4.5) simultaneously.

I take under consideration a simple, but pretty general function like

λ2(a,H) = λo

2
aq

Hn
= λo

2
aq+n

.
an

, (4.28)

where n > 0 and q are some real constants, and λo is a coupling constant which is small

enough to see the interaction as a perturbation at late times, whose units are [T−2−n].

The condition (4.1) is ensured since n > 0, and (4.5) if q + n < 4. Hence, the interaction

dominates at early times and the perturbative method is not suitable there.



CHAPTER 4. FALSIYING THE MULTIVERSE HYPOTHESIS 78

The power spectrum of the CMB is recovered with an almost de Sitter expansion

during inflation. Hence it is necessary to introduce a scalar field whose potential is almost

constant, or equivalently, whose barotropic parameter (3.27) is very close to ωΛ = −1.

Thus, I define

ω = −1 + 2α
3 , α ≳ 0, (4.29)

so the density (3.18) goes like

ρ(a) = 1
2H

2
dS

(
ad

a

)2α

, (4.30)

where HdS is the Hubble parameter for a perfect de Sitter expansion (when α = 0 and

λo = 0), and ad is a constant to be determined. The Friedmann equation (4.24), including

the scalar field, is written as

H2 = H2
dS

[(
ad

a

)2α

+ λo

H2
dSH

na4−q

]
. (4.31)

The emergence of the Hubble parameter in the denominator of the term given by the

interuniversal interaction makes the difference with previous studies [20].

Eq. (4.31) is a hard-to-solve differential equation. Writing it in terms of the scale

factor explicitly reads
.
an+2 = H2

dS
.
ana2α

d a2(1−α) + λo

a2−q−n
. (4.32)

This way a family of functions (4.28), which satisfies that q + n = 2 and so the condition

(4.5) for any values of n and q too, simplifies the differential equation to

.
an+2 = H2

dS
.
ana2α

d a2(1−α) + λo. (4.33)

This is an oversimplification of the system we make to get simple analytical results. Among

all possible values we will consider the case n = 1 and q = 1 because it yields an extreme

case of all possible dynamics. To see what I mean, one should notice that at the very early

universe the scale factor scales like

a(t) ∼ n+2
√
λot, (4.34)

where the first term of the right hand side of Eq. (4.33) is neglected. With that initial

motion of the universe I find that aH ∼ n+2
√
λo ∼ k, which is constant. Therefore, the
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modes of the fluctuations do not cross the Hubble horizon. Thermal equilibrium is expected

and so is a little change to the visible power spectrum. Even if I restore the neglected

term in Eq. (4.33) using (4.34) as feedback, the dynamics is slightly accelerated, for which

aH increases and any suppression of the spectrum is expected. The accelerated motion

is increased for any other values of n and q. For that reason, considering models with

coupling functions into the family for which the Friedmann equation is (4.33), the general

shape of the spectrum obtained by Planck must be recovered solely by the scalar field,

and the coupling constant can be taken as a perturbation at any time.

Summarizing, as a limiting example, let me consider the model where the always

positive Hubble parameter contributes the most to the interaction term in the Friedmann

equation (4.31), i. e., n = 1 and q = 1. For bigger n, the interaction term is smaller, so

any effect obtained from this case will be suppressed. Thus, Eq. (4.31) can be expanded

at first order around λo yielding

H ≈ HdS

(
ad

a

)α

+ λo

2HdSHa3−αaα
d

≈ HdS

(
ad

a

)α

+ λo

2H2
dSa

3 . (4.35)

Trying an ansatz for the scale factor like

a(t) = ao(t) [1 + ξ(t, λo)] , (4.36)

where ao is the solution of Eq. (4.35) which neglects the perturbative term, and assuming

that ξ(t, λo) ≪ 1 and all second derivatives are neglected, we find the solution to (4.35) as

a(t) ≈ ad (αHdSt)1/α

[
1 − λo

6a3
dH

2+3/α
dS (αt)−1+3/α

]
. (4.37)

What is left now is the usual procedure to find the power spectrum

PR(k) = k3

2π2
|vk|2

z2 , (4.38)

and the angular power spectrum of the CMB. In order to do so, I find the slow-roll

parameter [156]

ϵ = − Ḣ

H2 ≈ α− λo
(3 − α)(3 − 2α)(1 − α)

6H2
dSa

2(η) η, (4.39)

and use it to write the Mukhanov-Sasaki equation (4.8), at first order in λo, as

v′′
k(η) +

k2 − 2
η2 − 3α

η2 + λo
[aα

dHdS(1 − α)]
2

1−α

6H2
dS

|η|
1+α
1−α

 vk(η) = 0, (4.40)
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where we have included

η ≈ − tα

(1 − α)a(t) ≈ − 1
(1 − α)aH ,

z′′

z
= (aH)2(2 − ϵ). (4.41)

One confronts here the problem of the boundary conditions at the beginning of

inflation. Even if λo is taken as a perturbation, one cannot recover the Bunch-Davies

vacuum at early times for this case reading

vk(η) = e−ikη

√
2k
. (4.42)

Nonetheless, I propose to consider that the classical evolution started at the very early

stages, where the interaction dominates such that one can impose the Bunch-Davies

vacuum at the time

ηknee ∼ − 1
(1 − α) 3

√
λo

∼ − 1
3
√
λo

, (4.43)

which is the corresponding conformal time where the almost de Sitter expansion of the

late times fulfills the condition that aH = 3
√
λo, which is what I found as the less energetic

mode inside the horizon at the early stages. Ergo, a solution can be

vk(η) = v
(0)
k (η)efk(η,λo), (4.44)

where v(0)
o (η) is the solution to the non-perturbed Mukhanov-Sasaki equation (4.40), and

f(η, λo) is a slow varying function such that the exponential is very close to unity, and

whose second order derivatives can be neglected. Thus, introducing the ansatz (4.44) into

(4.40) one finds that

vk(η) = v
(0)
k (η) exp

−λo
[aα

dHdS(1 − α)]
2

1−α

12H2
dS

∫ η

|η̃|
1+α
1−α

v
(0)
k (η̃)

v′
k

(0)(η̃)
dη̃ + ∆k

 , (4.45)

where ∆k is a constant of integration. In consequence of the imposition of the boundary

conditions at very early times, so that ηknee is considerably large, such constant ∆k is

almost purely imaginary, what contributes into vk(η) as a phase which is not going to be

relevant since the power spectrum (4.38) is only dependent on its modulus.

The solution v
(0)
k (η) in Eq. (4.45) is well-known to be [20, 156, 157]

v
(0)
k (η) =

√
π|η|
2 H(1)

µ (k|η|) , µ ≈ 3
2 + 5

9α, (4.46)
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where H(1)
n (z) is the Hankel function of the first kind.

Finally, the power spectrum (4.38) has the form:

PR(k ≲ aH) ≈
[
(1 − α) Γ(ν)

Γ(3/2)
H

2π

]2 (
k|η|

2

)−2α ∣∣∣efk(η,λo)
∣∣∣2 , (4.47)

which is found, in our case, at first order in ϵ ∼ α, and at the moment when the modes

crosses the horizon k∗ ≈ a∗HdS, to be like

PR(k ≲ aH) ≈ 1
2−2α

{[
1 − α + Ψ

(3
2

)
α
]
HdS

2π

}2 ( k

a∗HdS

)−2α ∣∣∣efk(η,λo)
∣∣∣2 , (4.48)

where Ψ(z) := Γ′(z)/Γ(z) is the digamma function.

The power spectrum (4.38) is expected to fit the power law

PR(k) = As

(
k

k∗

)ns−1

, (4.49)

when aH ∼ k, or equivalently, k|η| ∼ 1, where As, and ns depend on the given value k∗

set by the experiment. From the Planck analysis [12], where they considered k∗ = 0.05

Mpc−1, it was obtained As = (2.105 ± 0.030) × 10−9, and ns = (0.9665 ± 0.0038). The

absolute value of the exponential can be considered very close to unity such that we can

derive, comparing with the fit (4.49), the values

α = 0.0168 ± 0.0019, ad = a∗ = (9.052 ± 0.067) · 10−56, (4.50)

HdS = (2.896 ± 0.021) · 10−4 = (5.372 ± 0.039) · 1039 s−1. (4.51)

I would like to point out that the actual values, in dimensionless units, are

a0 = 1, H0 ≈ 1.2 · 10−61, (4.52)

for comparison.

Lastly, the power spectrum (4.38) and the solution (4.45) are used to find the

angular power spectrum, given in terms of the coefficients

Cl = 2T 2
0 l(l + 1)

∫ ∞

0

dk
k
PR(k)∆2

l (k), (4.53)

where T0 = (2.72548±0.00057) K is the temperature of the CMB [159], and camb has been

used to obtain the transfer functions ∆l(k). The power spectrum and the angular power
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Figure 4.1: For both figures, the considered values for λo are: 10−46, 10−50,

10−54, 10−55 and 10−56 s−3. Left panel: The power spectrum for different values

of λo is shown. The dashed line represents the known spectrum (4.49) with

the values given by Planck. We find that the smaller the value of λo, the more

similar the spectrum to the standard, as expected. The effect of the interaction

affects only to the smaller modes k. Right panel: The normalized angular

power spectrum is shown for different values of λo. The solid line represents

the standard spectrum. The points and the error bars come from the data

measured by Planck. The dashed lines are the spectrum found for different λo.

For λo = 10−56 s−3, the dashed line is overlapped by the solid line. Here, the

smaller λo, the smaller are the affected multipoles.

spectrum of the CMB are shown in Figure 4.1. Both spectra show the same conclusions.

The interaction affects them as much as the coupling constant λo grows. It is about

λo ∼ O(10−56) s−3, (4.54)

when the whole spectrum is fully recovered. The spectrum is enlarged very rapidly for

those k or multipoles which are affected by the interaction. Thus, it is very unlikely that

the value of λo is bigger than 10−56, so it would be seen at the low multipoles of the

angular power spectrum very easily. Unluckily, that is also the reason why the CMB

angular spectrum does not look like a good observation to check the existence of a twin

universe, but to find an upper bound for the coupling constant of the interaction.

This was the most extreme case in which the interaction is the largest. If n into

Eq. (4.35) would have been taken larger, the constant λo would have been much smaller.
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However, it is just a matter of fixing constants and the coupling function λ2(a,H) into

the Friedmann equation (4.24). The procedure would be the same, and the results on the

spectra identical to the ones obtained here.

Another coupling functions λ2(a,H) could be considered in order to take into

account exotic singularities. Those require a more advanced ansatz which could contain

higher derivatives of the scale factor as jerk, snap and pop [160, 161]. Let us define a

generalization of my coupling function (4.28) like

λ2(a,H,X ) = λo

2
aq

HnX m
= (−1)mλo

2
aq+n−m

.
an−2m..

am
, (4.55)

where X = −(a..a)/.a2, and m > 0 is a constant. In order to fulfill the conditions (4.5) and

to reduce the Friedmann equation as I did to arrive to Eq. (4.33), the constraints on the

constants are q + n < 4 +m and q + n = 2 +m. The analysis is analogous to the one I

did before, and no relevant new feature appears.

For instance, let us consider m = 2, n = 4 and q = 0, so the Friedmann equation

(4.24) is written like

H2 = H2
dS

[(
ad

a

)2α

+ λo

H2
dSa

2..a 2

]
. (4.56)

At the initial singularity, the scale factor goes like t3/2, which corresponds to the evolution

of a perfect fluid whose barotropic parameter is ω = −5/9, and at late times it goes like

t1/α, where α << 1. From the very beginning until the end of inflation, the content of the

universe could be parametrized by a scalar field whose barotropic parameter changes as

the universe evolves from −5/9 to −1. It is an always expanding universe for which all

conclusions given for the previous model are admissible. Therefore, the spectra would be

slightly changed in every case. As it was an example, the analysis of the imprints on the

CMB has gone too far already in this specific case.
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4.4 Comment about an Interuniversal Contribution

to the Dark Energy

To finish, let me show the case which looks like an academic curiosity more than a

realistic scenario. It is the one where the coupling function λ2(a,H) in Eq. (4.24) to be of

the form

λ2(a,H) = λo

2 a
4f(H)H2, (4.57)

where f(H) is an explicit smooth function of H and λo is a positive constant. In order

to satisfy the condition (4.1), it is enough that f(H)H2 diverges when H vanishes. The

Friedmann equation (4.24), without any scalar field, i. e. with ρ(ϕ) = 0, yields the trivial

result

H = f−1(λ−1
o ) = constant, (4.58)

so the dynamics is the one of a de Sitter universe, but the one which has not got the

cosmological constant.

I say that this is a purely academic example for some reasons. For example, first,

the probability of the vacuum to decay (4.4) goes like

Γ ∝ exp
{

−
[
λof(H)H2

]−3
}
, (4.59)

which is constant during the whole evolution of the universe. That is not safe for the stability

of the false vacuum regions. Furthermore, there is no way to reproduce the spectrum of

the CMB without a field which is already there before inflation, so it contributes to the

matter content of the universe, enters the Friedmann equation (4.24), and modifies the

constancy of (4.58). Hence, in principle, unless there is a different origin for the primordial

fluctuations seen at the CMB spectrum, this will remain as an academic curiosity.



5
New Interpretation of the Third

Quantization Scheme

The question to solve in this short chapter is simple and very important: does

it make any sense what we have got so far? And with this question I do not refer to

the research presented in this text assuming that the theoretical background is well-

substantiated. Whether the results I got are correct or not is a matter of cut and thrust

between yet different outstanding points of view of the multiverse. Until we have got plain

observational verification of any theory of the multiverse, all research on the field have

been somehow reasonable. However, the question is raised regarding the most fundamental

concepts of the 3rdQ theory. Also, whether CQG is correct is another question which has

lasted for several decades already. All problems of CQG partially listed in Section 2.2 are

well-known, but with no solutions. For now, let just assume that CQG is solid enough.

The field theory of universes intended by 3rdQ of CQG was the conducting theory

used to find the EE of a pair of universes, in analogy with QED, for example. In principle,

85
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the action (2.65) describes the interactions in the multiverse, where the field Ψ is, in

principle, the only particle in the multiverse. Two particles travelling through a spacetime

in which no other particles exist, cannot be modified in any sense. Indeed, the only

interaction allowed is described by the potential term, given by a certain external field,

where m2(α, ϕ) enters, and it cannot change the nature of the field Ψ unless it feels another

particle Ψ† and releases... What particle? What is the vertex from the action (2.65)? Is it

well defined? The obvious answer is no.

The analogy with KG equation (2.18) was done very naively [162]. The Lagrangian

of a field theory does not contain a function m2(α, ϕ) which is not described by a field,

or the vacuum expectation of a field which indeed would be constant, as it happens with

the Higgs mechanism [1, 2]. There is not real relation between the KG equation (2.18)

and the WDW equation (2.53) since the masses of both of them are essentially different.

There is a constant, which makes the theory treatable, and the other is a function of

the internal degrees of freedom of the universes, that in the minisuperspace are the scale

factor and the scalar field. Therefore, considering the scale factor as a time variable,

the mass term changes in time. Any dynamics in that direction of the arrow of time

must be taken into account carefully. Regarding the pair of particles, what is shocking,

is the dependence of the EE on time, that should not be there since there is not any

kind of environment assumed. The nature of such a dependence must be understood as a

fundamental incompleteness of the description of the theory and its treatment.

Besides, it is interesting to remark that the action (2.65) is not bounded from below

if m2(α, ϕ) in Eq. (2.54) is negative. Even though, this argument is quite weak since Ψ†Ψ

is not related to any probabilistic interpretation of QM.

The way a field theory should modify 3rdQ, such that the EE of the pair moving

through a supposedly empty space is understood, as I found it, by introducing a new field

Ω accounting for the variability of m2(α, ϕ) in the WDW equation (2.53), which acts as a

source term. Taking a step back by regarding the most general superspace, this new field

would be the cause of the dynamics of the potential term of Eq. (2.41) proportional to

√
h
[
−(3)R + 2Λ + 16π(Ks + V )matter

]
⊃ H, (5.1)
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where Ks and V are the kinetic part of the spatial coordinates of the matter content and

V its potential energy.

There are many actions for which the WDW equation (2.53) is an equation of

motion for Ψ† through the Euler-Lagrange equations

∂

∂α

(
δL

δ(∂αΨ†)

)
+ ∂

∂ϕ

(
δL

δ(∂ϕΨ†)

)
− δL
δΨ† = 0. (5.2)

For example, let us consider a real scalar field Ω. The action is then

S3Q =
∫

dαdϕ
[
−Ψ†□Ψ − 1

2Ω□Ω + g3ΩΨ†Ψ + V (Ω2)
]
, (5.3)

where V (Ω2) is the particular potential of the new field, g3 is a coupling constant and

we recognize g3Ω = m2. The field Ω is expected to be real since it is proportional to

m2(α, ϕ), which can be any real, possibly negative, number. Thus, the new field has its

own dynamics ruled by

− 1
g3

{[
∂2

∂α2 − ∂2

∂ϕ2

]
Ω + ∂V (Ω2)

∂Ω

}
= Ψ†Ψ. (5.4)

From this equation of motion it seems that there is a way to control the unitarity of the

wave function, since there is an explicit expression for |Ψ|2 given in terms of Ω, but such

control is not perfect. For instance, let us consider that the wave function of the universe

fulfills |Ψ|2 = C at all points of the phase space, where C is a positive constant, and a

potential V (Ω2) = MΩΩ2/2. Eq. (5.4) is then{[
∂2

∂α2 − ∂2

∂ϕ2

]
Ω +MΩΩ

}
= −g3. (5.5)

Taking a look at Eq. (2.54), the limit at early times shows a vanishing function for m2(α, ϕ)

and its derivatives, hence Ω is also vanishing. It is not in agreement with what we have

obtained from Eq. (5.5) since Ω cannot be vanishing. Therefore, there is no way to keep a

constant |Ψ|2 at least with the potential we used.

Another natural example is to consider a complex scalar field Ω. The action then

reads

S3Q =
∫

dαdϕ
[

− Ψ†□Ψ − Ω†□Ω + g4Ω†ΩΨ†Ψ + V (|Ω|2)
]
, (5.6)

from where we recognize that m2 = g4Ω†Ω > 0. It is important to notice that here the

action is bounded from below, since m2(α, ϕ) > 0, which was our weak condition to get a
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bounded action (2.65). It is not a problem to describe the actual universe as the mass

term m2(α, ϕ) has always been positive during standard ΛCDM evolution. The dynamics

of the new field Ω† is now given by
[
∂2

∂α2 − ∂2

∂ϕ2 + g4Ψ†Ψ
]

Ω = −∂V (|Ω|2)
∂Ω† , (5.7)

while Ω obeys the complex conjugated equation. Both equations for the new particle are

similar to a WDW equation, and coincide when V (|Ω|2) vanishes. Whether self-interactions

of the Ω field exist or not is impossible to say, and that is why we cannot conclude that it

is a universe-like field as Ψ. Even so, it keeps intentionally the symmetry U(1) found in

the action (2.65) in order to get the total electric charge still conserved, and besides, the

number of particles. This example is clearly more natural than the first one. However,

there is not a three-leg vertex predicted by the latter model as in the former one, which

makes the extensively-studied picture of parent universes giving birth to baby universes

[87, 88] impossible, unless exotic ingredients like axion-like particles are included [74].

Nonetheless, most of the work done on 3rdQ is not spoiled, since the WDW equation

(2.53) may be understood as an effective description of the underlying field theory we

propose. Note that due to the "coordinate" dependence of the mass in the third quantized

action (2.65), a nonperturbative solution of the path integral was not achievable in the

first place, seemingly resulting in a hidden Fermi-like interaction provided on the left of

Figures 5.1 and 5.2. These diagrams are completed by the introduction of the real scalar

and the complex scalar mediators to the right of Figures 5.1 and 5.2, respectively.

For instance, the entanglement entropy of the pair of universes calculated in Refs.

[111, 121, 137] remains unchanged for all models. However, the spectra of the infinite

universes created by dynamical variables in minisuperspace [83–85] square well with

this new interpretation because the background is flat, while an external field is held

accountable for this variation. The resulting field theory on flat spacetime, including a

source term, is thus equivalent to the canonical 3rdQ formalism on a dynamical, i. e.

expanding, minisuperspace. The only difference lies in the interactions between universes

and antiuniverses by virtue of a new field. Hence, the concept of 3rdQ is carried through all

the way inasmuch as every field is quantized instead of treating some of them as classical
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background.

I leave this new direction of research open for the future, but it is just a reinterpre-

tation of what we already knew about 3rdQ picture; just two faces of the same coin. Most

of the observational studies has been done based on the WDW equation without using

3rdQ or using the WDW equation as an effective equation of motion of the universes. It

yields the same dynamics on our universe and therefore the results are the same, as it

happens with all the results obtained in the previous chapters.

Figure 5.1: Interaction between universes without the mediation by the Ω-bosons

(left) and with them (right) as derived from the action (5.3), the second example.

Time’s flow implies a change in the variable α, the scale factor.

Figure 5.2: Interaction between universes without the mediation by the Ω-bosons

(left) and with them (right) as derived from the action (5.6), the second example.

Time’s flow implies a change in the variable α, the scale factor.



6
Conclusions and Perspectives

An interacting level III multiverse in Tegmark’s classification has been built on the

3rdQ formalism of CQG. In that multiverse the universes behave like particles in QFT.

Due to the Schwinger effect, a pair of universes can be created at the same point of the

spacetime. It is entangled and this entanglement is measured by the entanglement entropy.

In order to properly calculate the entanglement, we have used the invariant representation

in which the number of universes is constant and the entanglement appears well-defined.

We have considered the von Neumann entropy (2.74) as the measure of the entan-

glement as well as its extensions like Tsallis and Rènyi entropies (2.76). Other parameters

such as the temperature of entanglement (2.79) and Q (2.80), which have been suggested

before as good indicators of the entanglement, have also been studied in some cases.

Analysing many models of FLRW geometries we have obtained the following

conclusions about the EE of the pair of universes:

• First and quite important, there is always a pair of solutions to describe each of

90
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the universes of the pair such that it is compatible with the pair creation process

given by 3rdQ formalism. Otherwise, there could have been models for which it was

impossible to express them properly.

• Any distribution function A(k) like in Eq. (2.60) must be symmetric around k = 0

in order to easily explain the matter-antimatter asymmetry of the universe. Using

this property, we consider solutions (3.7) which simplify further calculations.

• The classical phase space of each universe is recovered by finding the imaginary part

of the EE of the pair. Out of the allowed region of the phase space, the entanglement

entropy is not real. It happens because it has a logarithmic shape which diverges

at the critical points of the classical evolution, i. e., when the Hubble parameter H

vanishes.

• The EE of every model has been found divergent at any critical point. It is in perfect

harmony with Kiefer’s conclusions in Ref. [65], where he states that the maximum of

the expansion of the universe must be a very quantum point since there, expanding

and contracting phases of the universe are overlapped.

• The treatment of the scalar field has an impact on the EE at the initial singularity.

A scalar field which is treated classically makes the EE divergent while treated

quantum mechanically makes it finite. The reason of this regularization is not yet

clear. Besides, there are only two models for which the EE is the same, being those

pairs de Sitter universes or stiff matter dominated universes.

• The divergent behaviour of the EE has been also found for some exotic singularities

like the Little Rip singularity, but not for other like Big Brake, Big Separation or

Big Freeze singularities. It implies that it is not a particular behaviour of the EE at

the critical points, but for a more general set of points of the phase space.

• The obvious dependence of the von Neumann entropy on the Hubble parameter cannot

be obtained in general, but only around those critical points where it diverges. Besides,

the EE was found to have a logarithmic behaviour like the Shannon information

content (3.53) of an event with probability H.
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• The generalized entropies like Tsallis and Rènyi entropies yield similar results to

the von Neumann entropy in a general case. Besides, Rènyi entropy follows an

asymptotic logarithmic shape in terms of the Hubble parameter around the critical

points, but the Tsallis entropy does not.

These have been a pretty large amount of properties of the EE which we have

found for a single pair of universes so far. The main conclusions of all those properties,

however, are expected to hold for a more general scenario where additional interactions

are imposed. The way those interactions are working in the theory is unknown and would

affect the WDW equation and the dynamics of the universes. The explanation for the new

interaction terms may be understood as coming from a more general theory of gravity

[163, 164], including corrections to the curvature term of the Einstein-Hilbert action (2.6)

or nonlocal terms.

All those considerations have been taken into account to impose a heuristic interac-

tion, like (4.28) or (4.55), between the pair of universes and to see if we could find some

hints on the CMB of our twin antiuniverse in case it exists. With some very special care,

it has been found that the interaction must be very small, being the coupling constant

λo ≲ O(10−56) s−3, in order to recover the spectrum we observe, and that it is affecting

the spectra of the CMB (see Figure 4.1) exaggeratedly for the smaller values of k or

the multipoles. In fact, the spectrum of the CMB is, at the end of the day, useless to

distinguish the kind of interaction described by the coupling function λ2(a,H), but it is

useful to constraint its strength, which is measured by the coupling constant λo. Hence,

we need to wait for future observations as the cosmic neutrino background or even the

spectrum of primordial gravitational waves to really test the model. They will provide us

with relevant information about an earlier stage of the evolution.

Finally, we have offered a new perspective of the 3rdQ scenario in which it becomes

a true field theory of universes, where, at least, a new particle must be included into a

multiverse of this kind to be the reason of the source term m2(α, ϕ) which appears in

the action (2.65). This way, the theory is completed as a full quantum field theory even

though it is impossible to know the real Lagrangian of the fundamental theory yet.
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