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Abstract

This dissertation deals with the new framework of Ricci Cosmology which has
recently emerged from the study of out-of-equilibrium relativistic fluids in curved
spacetime.
After briefly recalling the strengths and the challenges of the widely accepted Stan-
dard Cosmological Model or ΛCDM, we shortly review the theoretical construction
on which the framework of Ricci Cosmology relies.
Next, we introduce different models we have derived in this framework in order to
describe the late-time accelerated expansion of the Universe, under the assumption
of constant transport coefficients.
The first model considered is Isotropic Ricci Cosmology, in which Ricci pressure
terms affect all the matter components filling in the Universe. A departure from
perfect fluid redshift scaling is found for each matter component.
Next, we consider two models in which we drop the assumption of the Cosmolog-
ical Principle: in the first model, we study the consequences of the departure from
equilibrium for cosmic fluids on a background described by the Bianchi I Type met-
ric, while in the second model, we consider an inhomogeneous Universe described
by the Lemaître-Tolman-Bondi metric.
Then, we study the model of Ricci Vacuum Cosmology in which non-equilibrium
Ricci terms affect only the vacuum pressure. As a result of such departure from
equilibrium for the vacuum, its energy density depends on the energy densities of
matter and radiation. Two subcases are taken into account: in the first, the Ricci
vacuum interacts with Cold Dark Matter, while in the second, it interacts with a rel-
ativistic species, which we call Dark Radiation.
The last model we consider is the Tilted Ricci Cosmology, in which the observer
4-velocity does not coincide with the fluid 4-velocity, leading to the presence of an
energy flux and an anisotropic stress in the fluid as seen by the observer. We study
the effects that the non-equilibrium Ricci terms have onto the cosmic fluid and on
its energy conditions.
Finally, after introducing the statistical tools for Bayesian Inference and the available
cosmological data, we discuss the results of the fit of the Isotropic Ricci Cosmology
model against these cosmological data.
Observational bounds on the parameters of the model are found and its capability to
relief the Hubble tension at the background level and to describe better than ΛCDM
the cosmological data are discussed.
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Chapter 1

Introduction

In Cosmology, the model that best describes the late-time phase of accelerated ex-
pansion of our Universe is the Standard Cosmological Model, also known as ΛCDM.
Despite its strengths, we still face fundamental theoretical issues regarding the phys-
ical nature of Cold Dark Matter (CDM) and of the Cosmological Constant Λ.
Furthermore, there are new observational challenges due to the growing precision
of the cosmological data, among which the most important is represented by the
Hubble Tension.
Among the proposals to solve the new and the old puzzles present in Cosmology,
the hypothesis of a departure from the perfect fluid description of the cosmic fluid
has been proposed and represents the core of the framework of Viscous Cosmol-
ogy, where a dissipative term proportional to the Hubble constant modifies the bulk
pressure of the cosmic fluid. For recent reviews, see (Brevik and Grøn, 2014; Brevik
et al., 2017).
The models in Viscous Cosmology may differ for the matter components filling in
the Universe affected by the bulk viscosity or in the assumptions made on the bulk
viscosity coefficients. Some of these models have revealed successful in describing
the late-time accelerated expansion. For recent works, see (Brevik, Obukhov, and
Timoshkin, 2015; Barbosa et al., 2015; Mohan, Sasidharan, and Mathew, 2017; Silva
and Silva, 2019; Cruz, González, and Palma, 2020; Brevik, Makarenko, and Tim-
oshkin, 2019; Madriz Aguilar et al., 2020). So far, nevertheless, it is still debated
whether they can solve the Hubble tension (Anand et al., 2017; Yang et al., 2019;
Elizalde et al., 2020; Normann and Brevik, 2021).
From the study of relativistic dynamics of fluids out of equilibrium in a curved back-
ground, such bulk viscous term is seen just as a first order departure from equilib-
rium for the cosmic fluids filling in the Universe. In this framework, the correction
to the perfect fluid Energy-Momentum Tensor due to the departure from equilib-
rium is written in terms of a power expansion of gradients of hydrodynamic fields
describing the fluid, i.e. its 4-velocity and its energy density, and the metric of the
curved background.
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Based on these studies, a new cosmological framework, dubbed Ricci Cosmology,
has been proposed, in which second order deviations from equilibrium pressure,
due to linear terms in the Ricci scalar and the Ricci tensor are taken into account.
The coefficients in front of such terms are the so-called second order transport coef-
ficients and they parameterise the cosmic fluid response to the new pressure terms.
The framework of Ricci Cosmology has been studied for the first time in (Baier,
Lahiri, and Romatschke, 2019).
These authors explored the possibility for these modifying bulk pressure terms to
support early-time inflationary phase of the Universe without resorting to exotic
matter fields.
Instead, in this thesis, we investigate the effects of such modifying bulk pressure
terms, dubbed as Ricci pressure terms, in the late-time accelerated epoch of our
Universe.
We propose some new models in the framework of Ricci Cosmology with different
assumptions on the background metric and on the matter components affected by
the new pressure terms in such a framework, and study their features in the descrip-
tion of the evolution of the Universe at the background level.
We test against data the Isotropic Ricci Cosmology model, studying whether such
model describes better than ΛCDM model the available cosmological data, and at
the same time, relieves the Hubble tension.
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Chapter 2

Standard Cosmological Model

In this chapter, we review briefly the pillars on which the Concordance Cosmologi-
cal Model or ΛCDM relies and we briefly mention some of its unsolved theoretical
and observational issues.

2.1 Ingredients of Standard Cosmological Model

In ΛCDM, the theory describing how the metric tensor gµν describing the geomet-
rical properties of the spacetime, treated as a 4-dimensional manifold, evolves with
the evolution of the matter in it, described by the Energy-Momentum Tensor (EMT)
Tµν, is General Relativity (GR).
The dynamics of the universe is thus described by the Einstein equations (Misner,
Thorne, and Wheeler, 1973), given by

Gµν =
8πG

c4 Tµν, (2.1)

where the sign convention (−,+,+,+) for the metric gµν is used, c is the speed
of light, G is the Newtonian constant of gravitation and Gµν is the Einstein tensor,
which can be written as

Gµν ≡ Rµν −
1
2

gµνR, (2.2)

where Rµν is the Ricci tensor and its trace R is the Ricci scalar.
A body subject only to gravity follows a geodesic curve in a curved spacetime. The
Ricci tensor describes how much two nearby geodesics deviate in such a spacetime,
whereas the Ricci scalar is a measure of how the area a small sphere deviates from
its value in a flat spacetime.
The Ricci tensor can be expressed in terms of the spacetime metric gµν via the for-
mula

Rµν = ∂αΓα
µν − ∂νΓα

αµ + Γλ
µνΓα

λα − Γλ
ναΓα

λµ, (2.3)
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where the Christoffel symbol Γρ
µν is given by

Γρ
µν =

1
2

gρα
(
∂µgαν + ∂νgαµ − ∂αgµν

)
. (2.4)

Physically, one can interpret the Christoffel symbols as terms describing gravita-
tional forces which cause objects to accelerate.
The second ingredient underlining ΛCDM is the Cosmological Principle: the Uni-
verse is assumed to be homogeneous and isotropic on large scales. This assumption
dictates a simple form for the spacetime metric gµν that goes under the name of
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric defined by the following in-
finitesimal spacetime interval in spherical comoving coordinates r, θ and φ

ds2 = −c2dt2 + a2(t)
[

dr2

1− Kr2 + r2(dθ2 + sin2 θdφ2)

]
, (2.5)

where a(t) is scale factor, depending only on cosmic time t. The constant K in the
metric (2.5) describes the geometry of the 3-dimensional spatial hypersurface with
K = +1, 0,−1 indicating a spherical, flat and hyperbolic geometry, respectively.
Numerous evidences point towards to flatness of our Universe spatial background
(K = 0), which results to be described by the flat FLRW metric

ds2 = −c2dt2 + a2(t)δijdxidxj, (2.6)

with xi comoving Cartesian coordinates.
For the flat FLRW background, the components of the Ricci tensor and the Ricci
scalar are given by

R00 = −3
ä
a

, (2.7)

Rij = c−2
(

äa + 2ȧ2
)

δij, (2.8)

and

R =
6
c2

(
ä
a
+

ȧ2

a2

)
, (2.9)

where the dot denotes the derivative with respect to the cosmic time t.
So far, we have considered the l.h.s. of Einstein equations (2.1).
On the r.h.s., the EMT Tµν represents the source of the gravitational field and is used
to describe in GR the matter components filling the Universe.
In ΛCDM, the form of such tensor for a matter component with energy density ρc2,
pressure P(ρ) and 4-velocity uµ

Tµν = ρuµuν + P(ρ)hµν, (2.10)
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where hµν = gµν + uµuν/c2 is the 3-spatial metric of the hypersurface orthogonal to
the fluid 4-velocity. The energy density ρc2 is the energy density of the fluid as seen
by a comoving observer with the fluid 4-velocity uµ.
GR does not specify anything about requirements matter fluids filling in the Uni-
verse must satisfy to be considered physically acceptable. Some further criteria are
needed and these are represented by the so-called energy conditions which put con-
ditions on the energy density ρc2 and its relation with the pressure P(ρ)

• Null Energy Condition (NEC)

ρ +
P(ρ)

c2 ≥ 0, (2.11)

• Weak Energy Condition (WEC)

ρ ≥ 0, and ρ +
P(ρ)

c2 ≥ 0, (2.12)

• Strong Energy Condition (SEC)

ρ +
P(ρ)

c2 ≥ 0, and ρ + 3
P(ρ)

c2 ≥ 0, (2.13)

• Dominant Energy Condition (DEC)

ρ ≥ 0, and ρ ≥ |P(ρ)|
c2 . (2.14)

These inequalities are only valid in the case of an isotropic metric such as the FLRW
metric (2.5) and in particular, the flat FLRW metric (2.6). For a general formulation
of energy conditions one can consult (Wald, 1984).
For the matter components filling in the Universe in ΛCDM model, the pressure
P(ρ) has the barotropic form given by

P(ρ) = wρc2, (2.15)

where w is the constant equation of state (EoS) parameter, which has a different
value depending on the nature of the fluid. In particular, in ΛCDM we have

• Dust, comprising baryonic matter and Cold Dark Matter (CDM) which has
only gravitational interaction with baryonic matter, it is the matter content
of the Universe whose pressure can be neglected with respect to its energy
density, i.e. w = 0;
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• Radiation, including photons and other possible relativistic relics from the pre-
vious stages of the Universe history, has an EoS w = 1

3 ;

• Cosmological Constant (CC) or Λ, a constant energy density pervading the
Universe, mostly attributed to the vacuum, has an EoS w = −1, representing
the simplest form of Dark Energy (DE) violating the SEC and thus, supporting
an accelerated expansion of the Universe in the current epoch.

By using the flat FLRW metric (2.6) and the EMT (2.10), the Einstein equations (2.1)
give us the Friedmann equations

H2 =
8πG

3
ρ, (2.16)

and
Ḣ = −4πG

(
ρ +

P(ρ)
c2

)
, (2.17)

where H is the Hubble parameter, defined as

H ≡ ȧ
a

. (2.18)

Furthermore, from the contracted Bianchi identities in GR

∇λRλ
µ =

1
2
∇µR (2.19)

the EMT (2.10) satisfies the conservation equation

∇µTµν = 0, (2.20)

which reduces in FLRW background to the continuity equation

ρ̇ + 3H
(

ρ +
P(ρ)

c2

)
= 0 (2.21)

From the continuity (2.21) the matter components filling the Universe in ΛCDM
have the following evolution

Radiation: ρ ∝ a−4, (2.22)

Dust: ρ ∝ a−3, (2.23)

CC: ρ ∝ const., (2.24)
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which imply that the Universe undergoes to two subsequent eras, a radiation dom-
inated era and a matter dominated era in which the Universe expansion following
the Big Bang is decelerated, followed by a third era, the CC dominated era corre-
sponding to our accelerated epoch.
By using the first Friedmann equation (2.16), the Hubble function can be rewritten
as

H2(a) = H0

[
Ωma−3 + Ωra−4 + ΩΛ

]
, (2.25)

where H0 is the Hubble parameter, i.e. the Hubble function evaluated at the present
scale factor, and the dimensionless energy density parameters are defined by

Ωc =
ρc

ρcrit
, (2.26)

with c ranging on the matter components in the Universe and the critical energy
density ρcrit defined by

ρcrit =
3H2

0
8πG

. (2.27)

In a flat Universe from the Hubble function (2.25), it is straightforward to check that
the dimensionless energy density parameters satisfy

Ωm + Ωr + ΩΛ = 1. (2.28)

2.2 Problems of Standard Cosmological Model

The first fundamental issue that characterises the Standard Cosmological Model re-
gards the theory of gravity on which it relies: GR is an effective theory which is
perturbatively nonrenormalizable due to the mass dimension of the gravitational
coupling with matter, i.e. the Newtonian gravitational constant G. GR is valid only
until energies of the order of the Planck Mass MP = 10−5 g are reached, an energy
regime realised in the early Universe. At such regimes we need a quantization of
gravity, for which many theories exist, but none of them has experimental confirma-
tion. For more insights on these issues see (Donoghue, 1995).
Even at the classical level, ΛCDM is not completely satisfactory for the description
of the late Universe.
One issue regards the still unknown physical nature of CDM: despite the efforts
and the current numerous active experiments, we still have proofs of CDM only
through indirect gravitational effects at the astrophysical and cosmological levels,
while still lacking a direct detection of it. For recent reviews on cosmological as-
pects see (Rubakov, 2019; Arbey and Mahmoudi, 2021; Green, 2022).
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Together with CDM also the physical nature of the cosmological constant is un-
known. Usually, it is commonly considered as the contribution of the vacuum to the
total energy density. However, this leads to two fundamental issues:

• The Cosmological Constant problem or fine-tuning problem: the observed value
of Λ is smaller than the estimations from Quantum Field Theory (QFT) by
60− 120 orders of magnitude (Weinberg, 1989).

• The coincidence problem which states that despite the fact that CDM and Λ
evolve differently, their energy densities have currently the same order of mag-
nitude (Weinberg, 2000).

More recently, as soon as we entered in the era of precision cosmology, next to the
aforementioned theoretical issues, observational challenges have started to appear.
There are some recent claims regarding the existence of cosmological dipoles (Webb
et al., 2011; Perivolaropoulos, 2014; Wilczynska et al., 2020) that lead to rethink about
the assumption of the Cosmological Principle.
Furthermore, tensions in the values of the parameters of ΛCDM tested against dif-
ferent sets of cosmological data at both the background and pertubations levels have
emerged.
The most important example is the Hubble tension that have attracted much atten-
tion in the last decade (Perivolaropoulos and Skara, 2021). On one hand, from the
CMB anisotropy measurements from Planck (Aghanim et al., 2020), for the value of
the Hubble parameter H0 one has H0 = (67.36± 0.54) km s−1Mpc−1, by assuming
ΛCDM as the fiducial cosmological model.
On the other hand, the local measurements of the same parameter point towards
greater values, among which from the Hubble Space Telescope we have H0 = (74.03±
1.42) km s−1Mpc−1 (Riess et al., 2019). This means that among the two values there
is a discrepancy of 4.4σ.
Currently, this discrepancy does not seem to be due to systematic effects in either
early-time or late-time measurements and may point to new physics beyond ΛCDM
(Bernal, Verde, and Riess, 2016; Knox and Millea, 2020).
With the goal of solving the aforementioned issues, in the last decades, a great
variety of models, which try to explain the late-time accelerated expansion of the
Universe without resorting to the Cosmological Constant Λ, have been proposed
(Copeland, Sami, and Tsujikawa, 2006; Clifton et al., 2012) trying to obtain a theory
that fits equally well the available cosmological data and addresses simultaneously
the Hubble tension problem (Di Valentino et al., 2021). For reviews on the experi-
mental status of some of these theories beyond ΛCDM, see references (Joyce et al.,
2015; Huterer and Shafer, 2018).
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Chapter 3

Relativistic Fluid Dynamics

In this chapter, we review the basics of Relativistic Fluid Dynamics in curved space-
time following (Romatschke and Romatschke, 2019), where a method to describe
fluids out-of-equilibrium starting from the perfect fluid EMT (2.10) has been intro-
duced. As shown in the following, such a departure from equilibrium is expressed
as a gradient expansion in hydrodynamic fields describing the perfect fluids, i.e. the
fluid 4-velocity, the energy density and the background metric.
At the first order in such gradient expansion, one recovers the terms which char-
acterise Viscous Cosmology, which is a path that has been widely explored in last
decades in order to explain the late time accelerated expansion of our Universe. For
recent reviews, see (Brevik and Grøn, 2014; Brevik et al., 2017). For more recent
works in the Viscous Cosmology framework see (Mohan, Sasidharan, and Mathew,
2017; Silva and Silva, 2019; Cruz, González, and Palma, 2020; Brevik, Makarenko,
and Timoshkin, 2019; Madriz Aguilar et al., 2020) and for attempts to solve the Hub-
ble tension in this framework, see (Anand et al., 2017; Yang et al., 2019; Elizalde et
al., 2020; Normann and Brevik, 2021).
Instead, at the second order in gradient expansion, one has more terms among
which there are those giving rise to the framework of Ricci Cosmology (Baier, Lahiri,
and Romatschke, 2019) to the study of which it is devoted the rest of this disserta-
tion.

3.1 General Construction

The first attempts to construct a consistent theory of dissipative fluids on a general
curved spacetime are due to Eckart (Eckart, 1940) and Landau and Lifshitz (Landau
and Lifshitz, 1987) in the first half of the twentieth century. After these first efforts
which have been proven to be plagued with stability and causality problems, in the
1960s Müller (Muller, 1967) and in the 1970s Israel and Stewart (Israel, 1976; Israel
and Stewart, 1979) succeeded to solve these issues, as shown in (Hiscock and Lind-
blom, 1983).
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Since then, further developments occurred which culminated in the theory of rel-
ativistic fluid dynamics without conserved charges reviewed in (Romatschke and
Romatschke, 2019), with an equivalent formulation for a fluid with a U(1) symme-
try based on an action principle, proposed in (Kovtun and Shukla, 2018). In the rest
of the chapter, we will follow (Romatschke and Romatschke, 2019).
By using a common procedure in statistical mechanics, when we describe a system
at sufficiently low energy and large scales, we can completely ignore the microscopic
degrees of freedom and describe the system using effective macroscopic degrees of
freedom more suitable for our purposes.
Here, we restrict our attention on the description of relativistic fluids. In order to
describe them at cosmological scales, we can use the framework of Effective Field
Theory (EFT).
In our case, we consider the conserved quantities of the quantum system underly-
ing the fluid, i.e. energy density, momentum and eventually charges as the effective
macroscopic degrees of freedom.
Once identified the degrees of freedom, the other ingredients for an EFT description
to be considered are the symmetries of the system: for a relativistic system without
charges we consider here, the symmetry group is that of the Poincaré group.
After having chosen the degrees of freedom suitable for the description of the sys-
tem at the energy scale which we are interested in and identified the symmetries
characterizing the system under consideration, fluid dynamics is built in three steps.
Firstly, fluid dynamics without fluctuations is derived. Then, small deviations from
equilibrium are considered giving rise to dissipative fluid dynamics. Finally, far
from equilibrium departures are taken into account.
In the following, we will consider only small deviations from equilibrium up to sec-
ond order on which the framework of Ricci Cosmology, covered in Chapter 4 relies.
For full discussion of relativistic fluids, refer to (Romatschke and Romatschke, 2019).

3.2 Fluids near equilibrium

To be more concrete, let us consider an out-of-equilibrium relativistic quantum sys-
tem with EMT T̂µν, invariant under Poincaré symmetry, on a general background
described by the metric gµν.
By taking the expectation value of the quantum EMT averaging on a statistical en-
semble, we can describe the system as a fluid in the EFT framework by means of an
effective classical EMT Tµν.
This EMT is built by using the conserved quantities, i.e. the energy density ρc2 and
the 4-velocity uµ, which are the fundamental hydrodynamic fields locally defined



3.2. Fluids near equilibrium 11

as the eigenvalue and the eigenvector of the EMT

uνTµν = −ρc2uµ (3.1)

and the source gµν only, for the perfect fluid contribution to the EMT, and gradients
of them for the near-equilibrium deviations.
In general, the EMT can be written as

Tµν = Tµν

(0) + Tµν

(1) + Tµν

(2) + . . . (3.2)

where the subscripts (0), (1), (2), . . . indicate the number of gradients in each term
of Tµν.
The corrections to the perfect fluid EMT Tµν

(0) are conventionally splitted into a trace-
less part πµν, referred to as the shear stress tensor

πµν = T<µν>
(1) + T<µν>

(2) + . . . (3.3)

where < · · · > indicates symmetrization over the indices and subtraction of the
trace and a trace part Πgµν, with

Π =
1

d− 1

(
Tµ

(1)µ + Tµ

(2)µ

)
+ . . . (3.4)

which is called the bulk stress.
Furthermore, from the EMT (3.2), we can obtain the equation of motion for the fluid
as

∇µTµν = 0, (3.5)

where we can truncate the gradient expansion of Tµν at the order we need to well
approximate the dynamics of the fluid under consideration.
In particular, if we consider a fluid free of dissipative effects, we can describe its
dynamics with great approximation by using the zeroth-order EMT Tµν

(0), satisfying
the eigenvalue equation

uνTµν

(0) = −ρc2uµ, (3.6)

where ρ and uµ in this case are equilibrium quantities, and the equation of motion
associated reads

∇µTµν

(0) = 0 (3.7)

In addition, the eigenvalue equation (3.6) constrains the form of the perfect fluid
EMT

Tµν

(0) = ρuµuν + P(ρ)hµν (3.8)
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which coincides with Eqn.(2.10).
When we consider near-equilibrium corrections, the local pressure P(ρ) acquires
corrections, which make the fluid EMT no longer isotropic in the local rest-frame.
In general, the space-space components of the fluid EMT gets the form

Ti
j,LRF = Pδi

j + πi
j,LRF + Πδi

j, (3.9)

where πi
j,LRF are the space-space components of the shear tensor in the local rest

frame.
Thus, the effective pressure in the i direction become

P(i)
e f f = P + πi

i,LRF + Π (3.10)

where in the second term there is no summation over i.
When we neglect anisotropies, that is possible on cosmological scales which we are
interested in here, the last equation simplifies to

Pe f f = P + Π, (3.11)

which is an isotropic non-equilibrium pressure, due to internal friction in a fluid and
can be responsible, in the cosmological context for the late-time accelerated expan-
sion of the Universe, as we will point out in the following.

3.2.1 First order Energy-Momentum Tensor

Here, we review the construction of the first order correction Tµν

(1), containing only
first order terms in the gradient expansion.
Since, as already mentioned, the energy density ρ and the pressure P(ρ) are related
by the EoS, one can choose any function of one of these quantities to build gradient
corrections, for instance ln ρ.
Thus, the building blocks for the first order correction Tµν

(1) to the perfect fluid EMT
(3.8) are ∇µ ln ρ and ∇µuν.
As a remark, we are not taking into account the gradient of the source, the metric
gµν, which is identically zero due to metricity condition of GR.
Then, by using the perfect fluid equation of motion (3.7), it is easy to see that not all
the gradients are independent: the only linearly independent first order gradients
are the comoving spatial gradients ∇⊥µ ln ρ and ∇⊥µ uν, with ∇⊥µ = hµν∇ν.
Thus, these gradients are grouped into three classes depending on their properties
under the action of the Poincaré group: scalars, vectors, and rank-two tensors.
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Furthermore, only those vectors and rank-two tensors orthogonal to uµ are indepen-
dent.
To the first order, there is only one independent term in each class

∇⊥µ uµ, ∇⊥µ ln ρ, ∇⊥µ uν (3.12)

Finally, from Eqns.(3.6) and (3.1), for the first order EMT Tµν

(1), we have the condition

uµTµν

(1) = 0. (3.13)

Now, we can combine the terms in Eqn.(3.12) with the zeroth-order hydrodynamic
fields ρ, uµ and the source gµν to form the first-order correction Tµν

(1) to the perfect

fluid EMT Tµν

(0) (3.8).

The only possible building blocks for Tµν

(1) are

hµν∇⊥λ uλ and ∇⊥(µuν) =
1
2
(∇⊥µ uν +∇⊥ν uµ), (3.14)

which can be linearly combined, giving rise to the terms

hµν∇⊥λ uλ, σµν = 2∇<µuν> = 2∇(µ
⊥ uν) − 2

3
hµν∇⊥λ uλ (3.15)

where σµν is the traceless shear tensor.
Hence, the first-order EMT in gradient expansion can be written as

Tµν

(1) = −ησµν − ζhµν∇⊥λ uλ. (3.16)

The first term in the last equation is the well-known shear viscosity which becomes
relevant in presence of anisotropies, and the second term is the bulk viscosity, which
modifies the bulk pressure of the fluid experiencing such departure from equilib-
rium and, as mentioned in the Introduction, has been used in alternative cosmolog-
ical models to DE.
The shear viscosity coefficient η and the bulk viscosity coefficient ζ, are collectively
called first order transport coefficients and to first order in gradients, the shear stress
tensor (3.3) and the bulk stress (3.4) imply the relations

π
µν

(1) = −ησµν, Π(1) = −ζ∇⊥λ uλ (3.17)

which are referred to as first order constitutive relations.
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3.2.2 Second order Energy-Momentum Tensor

The procedure described in the previous subsection can be applied to obtain higher-
order corrections to the perfect fluid EMT from building terms compatible with the
Poincaré group, containing a certain number of gradients depending on the order.
For instance, in order to obtain the second order correction Tµν

(2) to the perfect fluid
EMT (3.8) one considers all the independent scalars, and the vectors and the rank-
two tensors, orthogonal to uµ containing exactly two gradients.
There are seven independent scalars

∇⊥µ∇
µ
⊥ ln ρ,∇⊥µ ln ρ∇µ

⊥ ln ρ, σµνσµν, ΩµνΩµν, (∇⊥µ uµ)2,

uµuνRµν, R (3.18)

where Rµν is the Ricci tensor, R = gµνRµν is the Ricci scalar and Ωµν is the fluid
vorticity given by

Ωµν = ∇⊥[µuν] =
1
2
(∇⊥µ uν −∇⊥ν uµ), (3.19)

and six independent vectors orthogonal to uµ

∇⊥λ σλµ,∇⊥λ Ωλµ, σλµ∇⊥λ ln ρ, (∇⊥λ uλ)∇µ
⊥ ln ρ, ∆λµuνRλν(??) (3.20)

Regarding the rank-two tensorial terms, multiplying by the metric gµν, the scalars in
Eqn.(3.18) can be used to generate symmetric rank two tensors with non-vanishing
trace.
Finally, there are eight independent symmetric traceless rank-two tensors orthogo-
nal to uµ

∇<µ
⊥ ∇

ν>
⊥ ln ρ,∇<µ

⊥ ln ρ∇ν>
⊥ ln ρ, σµν(∇⊥λ uλ), σ

<µ
λ σν>λ,

σ
<µ
λ Ων>λ, Ω<µ

λ Ων>λ, uλRλ<µν>ρuρ, R<µν>. (3.21)

Hence, by considering linear combinations of the terms above (3.18), (??) and (3.21),
the second order correction Tµν

(2) to the perfect fluid EMT (3.8) can be written down,

with the shear tensor π
µν

(2) and the bulk pressure Π(2) given by

π
µν

(2) =ητπ

[
<∗Dσµν> +

∇⊥λ uλ

3
σµν

]
+ κ[R<µν> − 2uλuρRλ<µν>ρ] + λ1σ

<µ
λ σν>λ+

+ λ2σ
<µ
λ Ων>λ + λ3Ω<µ

λ Ων>λ + κ∗2uλuρRλ<µν>ρ + ητ∗π
∇⊥λ uλ

d− 1
σµν+

+ λ̄4∇
<µ
⊥ ln ρ∇ν>

⊥ ln ρ, (3.22)
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and

Π(2) =ζτΠD(∇⊥λ uλ) + ξ1σµνσµν + ξ2(∇⊥λ uλ)2 + ξ3ΩµνΩµν + ξ̄4∇⊥µ ln ρ∇µ
⊥ ln ρ

+ ξ5R + ξ6uλuρRλρ, (3.23)

respectively. The coefficients multiplying each term in the above expressions, are
called second order transport coefficients.
The second order constitutive relations (3.22) and (3.23) contain vanishing terms in
flat spacetimes, e.g. the terms multiplied by the coefficients κ, κ∗, ξ5, ξ6.
In the next chapters, we will consider the cosmological model, dubbed Ricci Cosmol-
ogy, introduced in (Baier, Lahiri, and Romatschke, 2019) in which the fluids filling
the Universe have a modified out-of-equilibrium pressure given by

pe f f = P(ρ) + ξ5R + ξ6uαuβRαβ (3.24)

where P(ρ) is the equilibrium barotropic pressure, ξ5 and ξ6 are the only non-zero
second order transport coefficients parametrising the deviation from equilibrium, R
is the Ricci scalar and uαuβRαβ is the projection of the Ricci tensor along the fluid
4-velocity.
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Chapter 4

Ricci Cosmologies

In this chapter, we introduce the models with different assumptions underlying
them we have considered in the new framework of Ricci Cosmology to describe
the late-time accelerated expansion of the Universe.

4.1 Isotropic Ricci Cosmology

We assume that our Universe is well described at large scales by the flat FLRW
metric (2.6) and that the Universe undergo the usual sequence of radiation, dust
and CC, dominated eras.
Given a matter component c with energy density εc = ρcc2, its effective pressure is
modified by the presence of Ricci pressure terms and is given by

pc,e f f = wcρcc2 + ξ5cR + ξ6cuαuβRαβ, (4.1)

where the second order transport coefficients ξ5c and ξ6c are assumed constant and
in general different for each matter component.
The Energy-Momentum Tensor is thus given by

Tµν =

(
ρc +

pc,e f f

c2

)
uµuν + pc,e f f gµν. (4.2)

From the Einstein equations (2.1), the Friedmann equations for Isotropic Ricci Cos-
mology governing a Universe filled with a single matter component with energy
density ε are

ȧ2

a2 =
8πG

3
ρc, (4.3)

−
(

2
ä
a
+

ȧ2

a2

)
=

8πG
c2 pc,e f f , (4.4)
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where the effective pressure pc,e f f written in terms of the scale factor a(t) and its
time derivatives reads

pc,e f f = pc + 6
ξ5c

c2
ȧ2

a2 + 3
(

2ξ5c

c2 − ξ6c

)
ä
a

. (4.5)

By inserting Eqn.(4.5) in the second Friedmann equation (4.4), one easily finds for
the scale factor a(t) a power law solution

a(t) = (t− t0)
α

α−β , (4.6)

where the coefficients α and β are modified due to the second-order transport coef-
ficients as

α = 3
(

ξ6c − 2
ξ5c

c2

)
− c2

4πG
, (4.7)

and

β = 2
ξ5c

c2 +
(3wc + 1)c2

8πG
. (4.8)

In the limit ξ5c = ξ6c = 0, Eqn.(4.6) gives the standard ΛCDM solution

a(t) = (t− t0)
2

3(wc+1) . (4.9)

Besides this solution, we will find another solution and test it against cosmological
data in Chapter 7.
Following (Caroli, Dabrowski, and Salzano, 2021), the Ricci scalar R and the projec-
tion of the Ricci tensor Rαβ along the fluid 4-velocity uα for the FLRW background
given in Eqns.(2.7) and (2.9) can be written in terms of the Hubble function as

R =
6
c2

(
2H2 + Ḣ

)
, (4.10)

uαuβRαβ = R00 = −3
(

H2 + Ḣ
)

. (4.11)

From the conservation of the Energy-Momentum Tensor (4.2), we obtain the con-
tinuity equation (2.21) for the energy density εc for such out-of-equilibrium fluid
given by

ρ̇c + 3H
(

ρc +
pc,e f f

c2

)
= 0, (4.12)

with the energy density related to the Hubble function via the first Friedmann equa-
tion (4.3), in the epoch dominated by the matter component with energy density εc.
By inserting the effective pressure (4.1) and the expressions for the Ricci scalar (4.10)
and the time-time component of the Ricci tensor (4.11) into continuity equation
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(4.12), using the expressions in Eqn.(4.10), one obtains the evolution equation for
the energy density as

ρ̇c + 3H

[
ρc(1 + wc) +

6ξ5c

c4 (2H2 + Ḣ)− 3ξ6c

c2 (H2 + Ḣ)

]
= 0. (4.13)

By replacing cosmic time derivatives with redshift derivatives and using the Hubble
function (4.3) to express the Hubble function in terms of the energy density, after
rearranging the terms, the last equation becomes

− (1 + z)
dρc(z)

dz
(
1 + 2ξ̂5c − ξ̂6c

)
+
[
3(1 + wc) + 8ξ̂5c − 2ξ̂6c

]
ρc(z) = 0, (4.14)

where the reduced second order transport coefficients

ξ̂5c ≡
12πGξ5c

c4 , and ξ̂6c ≡
12πGξ6c

c2 , (4.15)

have been defined. From the differential equation (4.14), we find for the energy
density the following expression

ρc(z) = ρc0(1 + z)
3(1+wc)+8ξ̂5c−2ξ̂6c

1+2ξ̂5c−ξ̂6c . (4.16)

From the evolution of the generic matter component energy density (4.16), one can
see that such matter component acquires an effective EoS parameter given by

wc,e f f =
wc +

2
3 ξ̂5c +

1
3 ξ̂6c

1 + 2ξ̂5c − ξ̂6c
(4.17)

The squared Hubble function for a flat Universe filled with dust, radiation and cos-
mological constant, all having a modified redshift scaling, can thus be written as

H2 = H2
0

[
Ωm(1 + z)3+δm + Ωr(1 + z)4+δr + ΩΛ(1 + z)δΛ

]
, (4.18)

where the dimensionless energy density parameters are those defined in Eqn. (2.26)
with the condition (2.28) and the deviation parameters δm, δr and δΛ for dust, ra-
diation and Λ, respectively, from usual redshift scaling can be easily derived from
Eqn.(4.17) as

δm =
2ξ̂5m + ξ̂6m

1 + 2ξ̂5m − ξ̂6m
, (4.19)

δr =
2ξ̂6r

1 + 2ξ̂5r − ξ̂6r
, (4.20)



20 Chapter 4. Ricci Cosmologies

and

δΛ =
8ξ̂5Λ − 2ξ̂6Λ

1 + 2ξ̂5Λ − ξ̂6Λ
, (4.21)

respectively.

4.1.1 Physical bounds from Thermodynamics

On the deviation parameters (4.19), (4.20) and (4.21), one can impose a physical
bound coming from the Second Law of Thermodynamics which states that the en-
tropy of a closed system S never decreases (Barrow, 1988), i.e.

∆S ≥ 0. (4.22)

These bounds are considered as priors for the fit of the model with cosmological
data presented in Chapter 7.
For the fluid with energy E = εV in a volume V, with temperature T and equilib-
rium pressure p, we apply the First Law of Thermodynamics

dE = TdS− pdV, (4.23)

in order to obtain the conservation equation for its energy density

ρ̇ + 3H
(

ρ +
p
c2

)
− T

V
Ṡ
c2 = 0. (4.24)

By comparing the last equation with the continuity equation (4.12), we find the fol-
lowing differential equation for the entropy S

T
V

Ṡ = −3H
(

ξ5R + ξ6uαuβRαβ

)
(4.25)

From the thermodynamic relation for enthalpy H ≡ E + pV = TS, the entropy can
be expressed as

S =
(

ρc2 + p
) V

T
, (4.26)

which combined with Eqn.(4.25), leads to

Ṡ
S
= − 3H

ρc2 + p

(
ξ5R + ξ6uαuβRαβ

)
(4.27)

This must be valid for each matter component filling in the Universe.
For a matter component with energy density εc, barotropic EoS parameter wc and
constant reduced second order transport coefficients ξ̂5c and ξ̂6c, the entropy S in
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terms of the scale factor reads

S(a) = S0a−
1

1+wc [8ξ̂5c−2ξ̂6c−δc(2ξ̂5c−ξ̂6c)]+3(2ξ̂5c−ξ̂6c). (4.28)

From imposing the Second Law of Thermodynamics (4.22), for each matter compo-
nent of the Universe and using the expressions for δm, δr, and δΛ found above, we
can obtain the constraints on the second order transport coefficients (4.15).
For the cosmological constant, the entropy is given by

S(a) = S0a3(2ξ̂5Λ−ξ̂6Λ), (4.29)

which increases when 2ξ̂5Λ − ξ̂6Λ ≥ 0. For dust, the entropy reads

S(a) = S0a−δm , (4.30)

which increases when δm ≤ 0. Finally, for radiation, it holds

S(a) = S0a−
3
4 δr , (4.31)

which increases when δr ≤ 0.

4.1.2 Energy conditions in Isotropic Ricci Cosmology

For a fluid with energy density ε, the effective pressure given by Eqn.(4.1) and
barotropic EoS parameter w, the energy conditions for a perfect fluid reported in
Chapter 2, get modified as in the following.

Null Energy Condition (NEC)

The Null Energy Condition (NEC) for Isotropic Ricci Cosmology is given by

ρ +
pe f f

c2 ≥ 0. (4.32)

By using the expressions for the Ricci scalar and the time-time component of Ricci
tensor from Eqns.(4.10) and (4.11), one has

ρ(1 + w) + 6
ξ5

c4

(
2H2 + Ḣ

)
− 3

ξ6

c2

(
Ḣ + H2

)
≥ 0. (4.33)



22 Chapter 4. Ricci Cosmologies

Further, using the First Friedmann equation (4.3), the definitions of the reduced sec-
ond order transport coefficients (4.15), and the definition of the deceleration param-
eter in terms of the Hubble function and its first time derivative

q = − Ḣ
H2 − 1, (4.34)

one has the bound

1 + w +
2
3
(
4ξ̂5 − ξ̂6

)
+

2
3
(
2ξ̂5 − ξ̂6

)
(−q− 1) > 0, (4.35)

which simplifies to

1 + w +
4
3

ξ̂5 −
2
3
(
2ξ̂5 − ξ̂6

)
q > 0. (4.36)

Thus, for Isotropic Ricci Cosmology, one finds bounds for the deceleration parame-
ter q, that for 2ξ̂5 − ξ̂6 > 0 leads to

q <
3
2

(
1 + w +

4
3

ξ̂5

)
1

2ξ̂5 − ξ̂6
, (4.37)

while for 2ξ̂5 − ξ̂6 < 0, one has

q > −3
2

(
1 + w +

4
3

ξ̂5

)
1

|2ξ̂5 − ξ̂6|
. (4.38)

Weak Energy Condition (WEC)

For the Weak Energy Condition (WEC) for Isotropic Ricci Cosmology, to the condi-
tion in Eqn.(4.32) we have to add the condition

ρ ≥ 0, (4.39)

which is unmodified for Isotropic Ricci Cosmology.

Strong Energy Condition (SEC)

For the Strong Energy Condition (SEC) for Isotropic Ricci Cosmology, to the condi-
tion in Eqn.(4.32), one needs to add the condition

ρ + 3
pe f f

c2 ≥ 0. (4.40)

With the same steps presented above for the NEC, one obtains the expression

1 + 3w + 4ξ̂5 − 2
(
2ξ̂5 − ξ̂6

)
q > 0, (4.41)
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which for 2ξ̂5 − ξ̂6 > 0 leads to

q <
1
2
(
1 + 3w + 4ξ̂5

) 1
2ξ̂5 − ξ̂6

, (4.42)

while for 2ξ̂5 − ξ̂6 < 0, one has

q > −1
2
(
1 + 3w + 4ξ̂5

) 1
|2ξ̂5 − ξ̂6|

. (4.43)

Dominant Energy Condition (DEC)

For the Dominant Energy Condition (DEC) in Isotropic Ricci Cosmology we have
two conditions that need to be satisfied. The first one is the positivity of the energy
density as for the WEC (4.39) and the second one is given by

ρ ≥
|pe f f |

c2 (4.44)

which after the same steps seen for the other energy conditions leads to the inequal-
ity

1 ≥
∣∣∣w +

4
3

ξ̂5 −
2
3
(2ξ̂5 − ξ̂6)q

∣∣∣. (4.45)

The last inequality can be rewritten as

1 + w +
4
3

ξ̂5 ≥
2
3
(2ξ̂5 − ξ̂6)q ≥ −1 + w +

4
3

ξ̂5, (4.46)

which gives two different bounds on the deceleration parameter q depending on the
sign of 2ξ̂5 − ξ̂6: for 2ξ̂5 − ξ̂6 > 0, we have

3
(
−1 + w + 4

3 ξ̂5

)
2(2ξ̂5 − ξ̂6)

≤ q ≤
3
(

1 + w + 4
3 ξ̂5

)
2(2ξ̂5 − ξ̂6)

, (4.47)

and for 2ξ̂5 − ξ̂6 < 0, one has

3
2|2ξ̂5 − ξ̂6|

(
−1− w− 4

3
ξ̂5

)
≤ q ≤ 3

2|2ξ̂5 − ξ̂6|

(
1− w− 4

3
ξ̂5

)
. (4.48)

Today, the Universe is undergoing a phase of accelerated expansion for which one
has a negative deceleration parameter evaluated at the present time q0 which can
be measured as shown in (Camarena and Marra, 2020). Furthermore, in Isotropic
Ricci Cosmology the Universe is dominated by the Cosmological Constant, which
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has equilibrium EoS parameter wΛ = −1, at the present time. For the late-time
accelerated expansion to happen the SEC must be violated. Hence, the inequalities
(4.37) and (4.42) for the reduced second order transport coefficients ξ̂5Λ and ξ̂6Λ give
us the constraint

1
q0
− 2ξ̂5Λ

1− q0

q0
< ξ̂6Λ < −2ξ̂5Λ

1− q0

q0
, (4.49)

together with 2ξ̂5Λ − ξ̂6Λ > 0 from the Second Law of Thermodynamics.

4.2 Anisotropic Ricci Cosmology

In this section, we obtain a solution for Ricci Cosmology when the isotropy assump-
tion is dropped.
For this purpose, we consider the Bianchi I Type metric which is given by

ds2 = −c2dt2 + X2(t)dx2 + Y2(t)dy2 + Z2(t)dz2, (4.50)

where X(t), Y(t), Z(t), functions of the cosmic time only, are the directional scale
factors different for each principal axis on the 3-spatial hypersurface, determined by
the fluid 4-velocity. One can immediately notice that for X(t) = Y(t) = Z(t) = a(t),
the metric (4.50) reduces to the flat FLRW (2.6).
We want to find how the effective pressure (3.24) looks like for a fluid near equi-
librium filling in the Universe with a background described by the Bianchi I Type
metric (4.50). From such a metric one can straightforwardly compute the time-time
component of the Ricci tensor, which reads

R00 = −
(

ḢX + H2
X + ḢY + H2

Y + ḢZ + H2
Z

)
, (4.51)

and the Ricci scalar, given by

R =
2
c2

(
ḢX + H2

X + ḢY + H2
Y + ḢZ + H2

Z

)
+

2
c2 (HX HY + HX HZ + HY HZ) (4.52)

in which the Hubble functions along the principal axes {x, y, z} have been defined
as

HX =
Ẋ
X

, HY =
Ẏ
Y

, and HZ =
Ż
Z

. (4.53)
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Thus, the effective pressure (3.24) can be written as

pe f f = p +
2ξ5

c2 (HX HY + HX HZ + HX HZ) +

+

(
2ξ5

c2 − ξ6

)(
ḢX + H2

X + ḢY + H2
Y + ḢZ + H2

Z

)
, (4.54)

where p is the equilibrium pressure.
Following (Akarsu et al., 2019), for the metric (4.50), the Einstein equations (2.1) read
as

HX HY + HY HZ + HX HZ = 8πGρ, (4.55)

− ḢY − H2
Y − ḢZ − H2

Z − HY HZ =
8πG

c2 pe f f , (4.56)

− ḢZ − H2
Z − ḢX − H2

X − HX HZ =
8πG

c2 pe f f , (4.57)

and
− ḢY − H2

Y − ḢX − H2
X − HY HX =

8πG
c2 pe f f . (4.58)

By combining the last equations, one has the Raychaudhuri equation given by

(
ḢX + H2

X + ḢY + H2
Y + ḢZ + H2

Z

)
= −4πG

(
ρ + 3

pe f f

c2

)
. (4.59)

By using the first component of the Einstein equations (4.55) and the Raychaudhuri
equation (4.59), the effective pressure (4.54) can be written as

pe f f =
p + 2

3 ξ̂5ρc2 + 1
3 ξ̂6ρc2

1 + 2ξ̂5 − ξ̂6
, (4.60)

where ξ̂5 and ξ̂6 are the reduced second order transport coefficients defined in Eqn.
(4.15).
By considering the equilibrium pressure p as the barotropic pressure with EoS pa-
rameter w, we find an effective EoS parameter we f f which coincides with Eqn.(4.17)
found in Section 4.1.
Furthermore, from the conservation of the Energy-Momentum Tensor (4.2), for an
isotropic source one gets the continuity equation

ρ̇ + 3H
(

ρ +
pe f f

c2

)
= 0, (4.61)

with H denoting the average Hubble function defined as

H =
1
3
(HX + HY + HZ) . (4.62)
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By substituting the effective pressure (4.54) in the continuity equation (4.61), for the
energy density one has the solution

ρ(t) = ρ0a−3(1+we f f ), (4.63)

where the average scale factor has been defined as

a(t) = (X(t)Y(t)Z(t))1/3. (4.64)

In the time-time component of the Einstein equations (4.55), and hence to the energy
budget of the Universe, there is a contribution from the expansion anisotropy. This
is evaluated in terms of the shear tensor defined in Eqn.(3.15), through the shear
scalar

σ2 =
1
2

σµνσµν. (4.65)

For the Bianchi I Type metric (4.50), the shear scalar can be written in terms of the
directional Hubble functions as

σ2 =
1
6

[
(HX − HY)

2 + (HY − HX)
2 + (HZ − HX)

2
]

. (4.66)

With an isotropic source as that considered here, it holds

HX − HY

c1
=

HX − HZ

c2
=

HY − HZ

c3
= a−3, (4.67)

where c1, c2 and c3 are integration constants and and a(t) is the average scale factor
(4.64).
Therefore, the shear scalar (4.66) is simply given by

σ2 = σ2
0 a−6, (4.68)

with σ2
0 = 1

6(c
2
1 + c2

2 + c2
3).

Analogously to dimensionless energy density parameters defined in Eqn.(2.26) for
dust, radiation and cosmological constant, one can define the density parameter for
the contribution of the shear scalar to the energy budget of the Universe as

Ωσ =
σ2

3H2
0

(4.69)

By using the average redshift, defined by

z = −1 +
1
a

, (4.70)
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with the average scale factor given by Eqn.(4.64), we can write the time-time com-
ponent of Einstein equations (4.55)

H2(a) = H2
0

[
Ωσ(1 + z)6 + Ωr(1 + z)4+δr + Ωm(1 + z)3+δm + ΩΛ(1 + z)δΛ

]
(4.71)

with deviation parameters for dust, radiation and cosmological constant given in
Eqn.(4.19), (4.20) and (4.21).
The Hubble function in Eqn.(4.71) differ from the Hubble function (4.18) found in
Section 4.1 for Isotropic Ricci Cosmology for two features: the Hubble function and
the redshift appearing in Eqn.(4.71) are average quantities, and a new term appears,
describing the contribution of the expansion anisotropy.

4.3 Inhomogeneous Ricci Cosmology

In this section, we study an inhomogeneous isotropic background which is de-
scribed by the so-called Lemaître-Tolman-Bondi (LTB) metric (Lemaître, 1933; Tol-
man, 1934; Bondi, 1947).
The general LTB metric reads

ds2 = −c2dt2 +
(A

′
(r, t))2

1 + E(r)
dr2 + A2(r, t)

[
dθ2 + sin2 θdφ2

]
, (4.72)

where the generalised scale factor A(t, r) depends not only on the cosmic time t, but
also on the radial coordinate r and A

′
(t, r) = ∂A(t,r)

∂r , Ȧ(t, r) = ∂A(t,r)
∂t .

One can immediately notice that for A(t, r) = a(t)r and E(r) = kr2, the metric (4.50)
reduces to the general FLRW metric (2.6).
For the rest of discussion, we consider a spatially flat model with E(r) = 0.
Following the same lines of the previous section, we compute the time-time compo-
nent of the Ricci tensor

R00 = − Ä
′

A′
− 2

Ä
A

, (4.73)

and the Ricci scalar

R = 2c−2 Ä
′

A′
+ 4c−2 Ä

A
+ 4c−2 Ȧ

A
Ȧ
′

A′
+ 2c−2 Ȧ2

A2 . (4.74)

By substituting these expressions in the effective pressure (3.24), one has

pe f f = p+ ξ5

[
2c−2 Ä

′

A′
+ 4c−2 Ä

A
+ 4c−2 Ȧ

A
Ȧ
′

A′
+ 2c−2 Ȧ2

A2

]
+ ξ6

[
− Ä

′

A′
− 2

Ä
A

]
. (4.75)
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Furthermore, the time-time component of Einstein equations (2.1) reads

Ȧ2

A2 + 2
ȦȦ

′

AA′
= 8πGρ, (4.76)

while the r− r component and the θ − θ component are given by

− Ȧ2

A2 − 2
Ä
A

=
8πG

c2 pe f f , (4.77)

and

− ȦȦ
′

AA′
− Ä

A
− Ä

′

A′
=

8πG
c2 pe f f , (4.78)

respectively, with the last equation coinciding with the φ − φ component for rota-
tional symmetry.
By combining all the components of Einstein equations, one arrives at the Ray-
chaudhuri equation

Ä
′

A′
+ 2

Ä
A

= −4πG
(

ρ + 3
pe f f

c2

)
. (4.79)

By using the first component of the Einstein equations (4.76) and the Raychaudhuri
equation (4.79), the effective pressure (4.75) can be written as

pe f f =
p + 2

3 ξ̂5ρc2 + 1
3 ξ̂6ρc2

1 + 2ξ̂5 − ξ̂6
, (4.80)

which coincides with Eqn.(4.60).
Furthermore, from the conservation of the Energy-Momentum Tensor (4.2), for an
isotropic source one gets the continuity equation

ρ̇ + 3H
(

ρ +
pe f f

c2

)
= 0. (4.81)

with H denoting the average Hubble function defined as

H(t, r) =
1
3

(
Ȧ
′
(t, r)

A′(t, r)
+ 2

Ȧ(t, r)
A(t, r)

)
. (4.82)

By substituting the effective pressure (4.80) in the continuity equation (4.61), for the
energy density one has the solution

ρ(t, r) = ρ0(r)a(t, r)−3(1+we f f ) (4.83)
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where the average scale factor has been defined as

a(t, r) = (A
′
(t, r)A(t, r)2)1/3, (4.84)

which, in turn, as can be noticed depends also on the radial coordinate r. As for
Anisotropic Ricci Cosmology, the time-time component of the Einstein equation
takes into account also the contribution to the energy budget of the Universe of
the anisotropy expansion that, in this case, is induced by the inhomegeneity. In this
case the shear scalar is given by

σ2 =
1
3

(
Ȧ
A
− Ȧ

′

A′

)2

. (4.85)

A similar condition to that used for Anisotropic Ricci Cosmology for an isotropic
source holds

1
k1(r)

(
Ȧ
′

A′
− Ȧ

A

)
=

1
k2(r)

(
Ȧ
′

A′
− Ȧ

A

)
= a(t, r)−3, (4.86)

where k1(r) and k2(r) are integration constants depending on r.
Therefore, analogously to the previous section, the shear scalar (4.85) is given by

σ2 = σ2
0 (r)a(t, r)−6, (4.87)

with σ2
0 (r) =

1
3(k

2
1(r) + 2k2

2(r)) and a(t, r), the average scale factor (4.84).
In the same way as done for Anisotropic Ricci Cosmology, one can define the density
parameter for the contribution of the shear scalar to the energy budget of the Uni-
verse, which has a dependence on the radial coordinate due to the inhomogeneity
encoded in the LTB metric. By defining the average redshift,

z(t, r) = −1 +
1

a(t, r)
, (4.88)

with the average scale factor given by Eqn.(4.84), we can write the time-time com-
ponent of Einstein equations (4.76)

H2(z, r)
H2

0(r)
= Ωσ(r)(1 + z)6 + Ωr(r)(1 + z)4+δr + Ωm(r)(1 + z)3+δm + ΩΛ(r)(1 + z)δΛ .

(4.89)
As for the Anisotropic Ricci Cosmology, the Hubble function in Eqn.(4.89) is an av-
erage quantity depending on the average redshift (4.88) but now the dimensionless
density parameters explicitly depend on the radial coordinate r.
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4.4 Ricci Vacuum Cosmology

Let us assume as in Section 4.1 that at large scales our Universe is homogeneous and
isotropic, i.e. well described by the flat FLRW metric (2.6) and that our Universe
is filled with baryonic matter, CDM and radiation with usual EoS parameters at
equilibrium plus a vacuum which is the only matter component whose pressure is
modified by the presence of the Ricci Cosmology pressure terms in Eqns.(4.10) and
(4.11) with an effective pressure

pe f f
vac = p0 + ξ5R + ξ6uαuβRαβ, (4.90)

where p0 is a constant of the dimension of pressure.
The total EMT with the contributions of matter, radiation, and vacuum reads

Tµν = (ρm + ρr + ρvac)uµuν + (pr + pe f f
vac )hµν (4.91)

with hµν = gµν + uµuν/c2, the 3-spatial metric perpendicular to the fluid 4-velocity
uµ. The dust energy density ρm is the sum of the energy density of CDM ρdm and
baryonic matter ρb and the radiation energy density ρr is the sum of photons energy
density ργ and the energy density ρdr of a component of radiation non-interacting
through electromagnetic force, which we call Dark Radiation (DR).
The vacuum is characterised by the condition

ρvac +
pe f f

vac

c2 = 0, (4.92)

which implies that the evolution of the vacuum energy density in Ricci Vacuum
Cosmology is dictated by the pressure pe f f

vac as

ρvac = −
p0

c2 −
ξ5

c2 R− ξ6

c2 uαuβRαβ. (4.93)

If one uses the expressions of the Ricci scalar and the time-time component of the
Ricci tensor in terms of the Hubble function and its first derivative with respect to
cosmic time in Eqns.(4.10) and (4.11), one finds for the vacuum energy density

ρvac(H) = − p0

c2 − 3
(

4
ξ5

c4 −
ξ6

c2

)
H2 − 3

(
2

ξ5

c4 −
ξ6

c2

)
Ḣ. (4.94)
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By using the following identifications

c0 = −8πG3c2p0, ν = −8πG
c2

(
4

ξ5

c2 − ξ6

)
, and ν̃ = −8πG

c2

(
2

ξ5

c2 − ξ6

)
,

(4.95)
the expression for the vacuum energy density coincides with the vacuum energy
density of Running Vacuum Model (Sola, 2013; Solà and Gómez-Valent, 2015; Perez
et al., 2021).
In order to find a solution for Ricci Vacuum Cosmology, we consider the Friedmann
equations that read

H2 =
8πG

3
(ρm + ρr + ρvac), (4.96)

and
3H2 + 2Ḣ = −8πG

c2 (pr + pe f f
vac ), (4.97)

which combined with the first Friedmann equation, gives us

Ḣ = −4πG
(

ρm +
4
3

ρr

)
. (4.98)

Thus, from the first Friedmann equation (4.96) and the first derivative of the Hub-
ble function with respect to cosmic time (4.98), one can find an expression for the
Ricci scalar and the time-time component of the Ricci tensor in terms of the energy
densities as

R =
8πG

c2 (ρm + 4ρvac), (4.99)

and
R00 = 8πG

(ρm

2
+ ρr − ρvac

)
, (4.100)

respectively. By substituting the last expressions in the vacuum condition (4.92), and
by using the dimensionless reduced second order transport coefficients defined in
Eqn.(4.15), one has for the vacuum energy density

ρvac = −
p0
c2 + 2

3

(
ξ̂5 +

ξ̂6
2

)
ρm + 2

3 ξ̂6ρr

1 + 8
3 ξ̂5 − 2

3 ξ̂6
. (4.101)

By using the initial condition

ρvac(a = 1) = ρvac0, (4.102)
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the constant p0 appearing in the effective pressure Eqn.(4.90) can be determined as

p0 =

[
−
(

1 +
8
3

ξ̂5 −
2
3

ξ̂6

)
ρvac0 −

2
3

ξ̂5ρm0 −
2
3

ξ̂6

(ρm0

2
+ ρr0

)]
c2. (4.103)

From the last expression, one can notice that the EoS at the present time t0 for the
vacuum does not coincide with the cosmological constant EoS wΛ = −1 but gets
modified due to the presence of the Ricci pressure terms (4.10) and (4.11).
By substituting the expression of the constant p0 (4.103), in the vacuum energy den-
sity (4.101), one gets

ρvac(a) = ρvac0−
2
3

(
ξ̂5 +

ξ̂6
2

)
1 + 8

3 ξ̂5 − 2
3 ξ̂6

(ρm(a)− ρm0) +
2
3 ξ̂6

1 + 8
3 ξ̂5 − 2

3 ξ̂6
(ρr(a)− ρr0). (4.104)

The conservation of the Energy-Momentum Tensor (4.91) leads to the following con-
tinuity equation for the fluids filling in the Universe

ρ̇ + 3H
(

ρ +
p
c2

)
= 0, (4.105)

where ρ = ρdm + ρb + ρdr + ργ + ρvac is the total energy density and p = pr + pe f f
vac

the total pressure of the matter components.

4.4.1 Cold Dark Matter - Ricci Vacuum interaction

In this subsection, we consider the vacuum interacting with CDM, where the baryon
energy density ρb and the total radiation energy density ρr satisfy the continuity
equations

ρ̇b + 3Hρb = 0, (4.106)

and
ρ̇r + 4Hρr = 0, (4.107)

which are immediately solved by

ρb(a) = ρb0a−3, (4.108)

and
ρr(a) = ρr0a−4. (4.109)

By using the vacuum condition (4.92), the last equations imply that the total conti-
nuity equation (4.105) becomes a continuity equation for CDM interacting with a time
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evolving vacuum
ρ̇dm + 3Hρdm = −ρ̇vac. (4.110)

By substituting the vacuum energy density (4.104) and using the baryon energy den-
sity (4.108) and the radiation energy density (4.109), one finds for the CDM energy
density the solution

ρdm(a) =

(
ρm0 −

8
3

ξ̂6

1− 2ξ̂6

)
a−3−δm +

8
3

ξ̂6

1− 2ξ̂6
a−4 − ρb0a−3, (4.111)

where the deviation parameter δm has been defined as

δm ≡
2ξ̂5 + ξ̂6

1 + 2ξ̂5 − ξ̂6
, (4.112)

and the initial condition ρdm(a = 1) = ρdm0 has been used.
Therefore, by substituting the energy densities (4.104), (4.108), (4.109), and (4.111) in
the first Friedmann equation (4.96), for the Hubble function one has

H2(a) = H2
0

[
ψ1Ωma−3−δm + ψ2Ωra−4 + 1− ψ3Ωm − ψ4Ωr

]
(4.113)

with the functions of the parameters ψ1, ψ2, ψ3 and ψ4, defined by

ψ1 ≡

(
1− 2ξ̂6

(
1 + 4

3
Ωr
Ωm

))
(1 + 2ξ̂5 − ξ̂6)

(1− 2ξ̂6)(1 + 8
3 ξ̂5 − 2

3 ξ̂6)
, (4.114)

ψ2 ≡
1

1− 2ξ̂6
, (4.115)

ψ3 ≡
1 + 2ξ̂5 − ξ̂6

1 + 8
3 ξ̂5 − 2

3 ξ̂6
, (4.116)

and

ψ4 ≡
1 + 8

3 ξ̂5 − 4
3 ξ̂6

1 + 8
3 ξ̂5 − 2

3 ξ̂6
. (4.117)

For the Hubble function to be well defined mathematically and physically, we im-
pose the following two conditions

ψ1 ≥ 0, and ψ2 ≥ 0. (4.118)

From the second inequality of (4.118), one has

ξ̂6 ≤
1
2

(4.119)
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and combining the last equation with the first inequality of (4.118), we have also the
following restriction on the region of the parameters(

1− 2ξ̂6

(
1 + 4

3
Ωr
Ωm

))
(1 + 2ξ̂5 − ξ̂6)

1 + 8
3 ξ̂5 − 2

3 ξ̂6
≥ 0 (4.120)

4.4.2 Dark Radiation - Ricci Vacuum interaction

Let us consider now the case in which dust and photons satisfy the following conti-
nuity equations

ρ̇m + 3Hρm = 0, (4.121)

and
ρ̇γ + 4Hργ = 0, (4.122)

respectively, from which one has the usual energy density evolutions for dust

ρm(a) = ρm0a−3 (4.123)

and for photons
ργ(a) = ργ0a−4. (4.124)

Thus, the continuity equation (4.105) simplifies to

ρ̇dr + 4Hρdr = −ρ̇vac. (4.125)

By substituting the vacuum energy density (4.104), the dust energy density (4.123)
together with the photons energy density (4.124) into Eqn.(4.125), one can find the
DR energy density given by

ρdr(a) =

(
ρr0 +

2ξ̂5 + ξ̂6

1 + 8
3 ξ̂5 +

4
3 ξ̂6

ρm0

)
a−4−δr − 2ξ̂5 + ξ̂6

1 + 8
3 ξ̂5 +

4
3 ξ̂6

ρm0a−3 − ργ0a−4,

(4.126)
where the deviation parameter δr has been defined as

δr =
8
3

ξ̂6

1 + 8
3 ξ̂5 − 4

3 ξ̂6
, (4.127)

and the initial condition ρdr(a = 1) = ρdr0 has been used.
Thus, by substitution of the energy densities (4.104), (4.123), (4.124), and (4.126) in
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the first Friedmann equation (4.96), one gets

H2(a) = H2
0

[
χ1Ωma−3 + χ2Ωra−4−δr + 1− χ3Ωm − χ4Ωr

]
, (4.128)

where the functions of the parameters χ1 and χ2 are defined as

χ1 ≡
1

1 + 8
3

(
ξ̂5 +

ξ̂6
2

) , (4.129)

and

χ2 ≡
1 + 8

3 ξ̂5 − 4
3 ξ̂6

1 + 8
3 ξ̂5 − 2

3 ξ̂6

1 + 8
3

(
ξ̂5 +

ξ̂6
2

) (
1 + 3

4
Ωm
Ωr

)
1 + 8

3

(
ξ̂5 +

ξ̂6
2

) , (4.130)

while χ3 ≡ ψ3, and χ4 ≡ ψ4.
For the Hubble function to be well defined mathematically and physically, one
needs two constraints on the functions χ1 and χ2, i.e.

χ1 ≥ 0, and χ2 ≥ 0. (4.131)

From the first inequality of Eqn.(4.131), we have that the following must hold

1 +
8
3

(
ξ̂5 +

ξ̂6

2

)
> 0, (4.132)

while from the second inequality of Eqn.(4.131), we have the following restriction to
the allowed region in the parameter space

1 + 8
3 ξ̂5 − 4

3 ξ̂6

1 + 8
3 ξ̂5 − 2

3 ξ̂6

[
1 +

8
3

(
ξ̂5 +

ξ̂6

2

)(
1 +

3
4

Ωm

Ωr

)]
≥ 0. (4.133)

4.5 Tilted Ricci Cosmology

In this section, after having shortly presented the framework of Tilted Cosmology,
we study how the energy conditions in this context are modified under the presence
of departure from equilibrium for the cosmic fluid determined by the Ricci pressure
terms.

4.5.1 Tilted Cosmology

The relevant feature of the Tilted Cosmology is that the fluid 4-velocity differs from
the observer 4-velocity in the Universe.
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Let us indicate with uα the fluid 4-velocity and with nα the observer 4-velocity. These
two 4-velocities define two different 3-spatial hypersurfaces with the metrics given
by

hµν = gµν +
uµuν

c2 , (4.134)

and
h̃µν = gµν +

nµnν

c2 , (4.135)

respectively, with the metric (4.134) appearing in the Energy-Momentum Tensor
(4.2).
Following (King and Ellis, 1973), the relation between the two 4-velocities uµ and nµ

is specified by the hyperbolic tilt angle β

uµnµ = − cosh β, (4.136)

and by the direction of the tilt that can be specified through either the projection of
the fluid 4-velocity on the so-called surfaces of homogeneity S(t) described by the
metric h̃µν (4.135), i.e.

h̃µνuν = sinh βc̃µ, (4.137)

or the projection of the observer 4-velocity on the 3-spatial hypersurface determined
by the fluid 4-velocity with metric hµν (4.134)

hµνnν = − sinh βcµ. (4.138)

Therefore, the observer 4-velocity nµ and the fluid 4-velocity uµ are related by

uµ = cosh βnµ + sinh βc̃µ, (4.139)

and
nµ = cosh βuµ − sinh βcµ. (4.140)

For a clarification of the geometrical construction, see Figure 4.1. In a tilted Universe
model, we can rewrite the perfect fluid Energy-Momentum Tensor (2.10) in terms of
the observer 4-velocity nµ and the metric of its 3-spatial hypersurface hµν by using
Eqns.(4.134) and (4.139), as

Tµν = ρ̃nµnν + p̃h̃µν + 2q̃(µnν) + π̃µν, (4.141)

where energy density ρ̃ and the pressure p̃ of the fluid as seen by the observer are
given by

ρ̃ = ρ cosh2 β +
p
c2 sinh2 β, (4.142)
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FIGURE 4.1: Representation of the observer 4- velocity orthogonal to
the surface of homogeneity S(t) and making a hyperbolic angle β with
the fluid 4-velocity. The tensor pµν spans the 2-surface in S(t) perpen-

dicular ti the vectors cµ and c̃µ. (King and Ellis, 1973)

and
p̃ = p +

1
3
(ρc2 + p) sinh2 β, (4.143)

respectively.
By inspection of the Energy-Momentum Tensor (4.141), one can further notice that
as a result of the non-zero tilt between the fluid and the observer 4-velocities, the
observer will experience a non-zero energy flux q̃µ and a non-zero shear tensor π̃µν

in his reference frame, given by

q̃µ =
(

ρ +
p
c2

)
sinh β cosh βc̃µ, (4.144)

and
π̃µν =

(
ρ +

p
c2

)
sinh2 β

(
c̃µ c̃ν −

1
3

h̃µν

)
, (4.145)

respectively.
Furthermore, the energy conditions reported in Chapter 2 for a barotropic fluid with
EoS parameter w as seen by an observer in Tilted Cosmology get modified, giving
us

• for the NEC, w > −1 which is unmodified;

• for the WEC,

w > − 1
sinh2 β

− 1, (4.146)

with the tilt angle β 6= 0;
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• for the SEC,

w > −1 + 2 sinh2 β

3 + 2 sinh2 β
; (4.147)

• for the DEC,

− 1 ≤ 2 +
1
3
(1 + w) sinh2 β ≤ 1. (4.148)

4.5.2 Tilted Ricci Cosmology

In this subsection, we modify the homogeneous tilted cosmological model of the last
subsection considering a fluid with the effective pressure pe f f given in Eqn.(3.24),
giving rise to the so-called Tilted Ricci Cosmology.
The only effect that the presence of such effective pressure has on the EMT of a fluid
as seen by a tilted observer (4.141) is to modify the energy density ρ̃, the pressure p̃,
the energy flux q̃µ and the shear tensor π̃µν by replacing the perfect fluid pressure
p with the effective pressure pe f f . In particular, the tilted energy density ρ̃ and the
tilted pressure p̃ become

ρ̃ = ρ cosh2 β +
pe f f

c2 sinh2 β, (4.149)

and
p̃ = pe f f +

1
3
(ρc2 + pe f f ) sinh2 β, (4.150)

respectively, which reduces to the Ricci Cosmology Energy-Momentum Tensor (4.2)
when the tilt angle β = 0.
In the following, we study how the energy conditions for Isotropic Ricci Cosmology
studied in Section 4.1 get modified when one takes into account the tilt angle defined
in Eqn.(4.136).

Null Energy Condition

The NEC in Tilted Ricci Cosmology reads

ρ̃ +
p̃
c2 > 0. (4.151)

By substituting the expressions for the energy density ρ̃ (4.149) and the pressure p̃
(4.150), and using the hyperbolic angle relation cosh2 β− sinh2 β = 1, we get(

ρ +
pe f f

c2

) [
4
3

cosh2 β− 1
3

]
> 0. (4.152)
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From the mathematical properties of hyperbolic functions, the second factor in the
last inequality (4.152) is greater than zero for every value of the tilt angle (4.136).
Thus, the inequality (4.152) reduces to

ρ +
pe f f

c2 > 0, (4.153)

which coincides with the NEC for Isotropic Ricci Cosmology (4.32).

Weak Energy Condition

For the Weak Energy Condition in Tilted Ricci Cosmology, the condition on the tilted
energy density to be added to NEC is given by

ρ̃ ≥ 0, (4.154)

that implies

ρ cosh2 β +
pe f f

c2 sinh2 β > 0. (4.155)

By following similar steps to those done for energy conditions for Isotropic Ricci
Cosmology in Section 4.1, one arrives at the inequality

cosh2 β

cosh2 β− 1
+ w +

4
3

ξ̂5 >
2
3
(2ξ̂5 − ξ̂6)q, (4.156)

which for 2ξ̂5 − ξ̂6 > 0 leads to

q <
3

2(2ξ̂5 − ξ̂6)

[
cosh2 β

cosh2 β− 1
+ w +

4
3

ξ̂5

]
, (4.157)

while for 2ξ̂5 − ξ̂6 < 0, one has

q > − 3
2|2ξ̂5 − ξ̂6|

[
cosh2 β

cosh2 β− 1
+ w +

4
3

ξ̂5

]
. (4.158)

Strong Energy Condition

The Strong Energy Condition in Tilted Ricci Cosmology reads

ρ̃ + 3
p̃
c2 > 0 (4.159)
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By substituting the expressions for the tilted energy density ρ̃ (4.149) and the tilted
pressure p̃ (4.150), we get

ρ cosh2 β +
pe f f

c2 sinh2 β + 3
pe f f

c2 +

(
ρ +

pe f f

c2

)
sinh2 β > 0. (4.160)

After inserting the expression for the effective pressure pe f f (3.24) and using the
deceleration parameter q (4.34), one has

3
(2 cosh2 β− 1) + w(2 cosh2 β + 1)

2 cosh2 β + 1
+ 4ξ̂5 −

(
4ξ̂5 − 2ξ̂6

)
q > 0. (4.161)

The last inequality for 2ξ̂5 − ξ̂6 > 0 becomes

q <
3

2(2ξ̂5 − ξ̂6)

[
(2 cosh2 β− 1)
2 cosh2 β + 1

+ w +
4
3

ξ̂5

]
, (4.162)

while for 2ξ̂5 − ξ̂6 < 0, one has

q > − 3
2|2ξ̂5 − ξ̂6|

[
(2 cosh2 β− 1)
2 cosh2 β + 1

+ w +
4
3

ξ̂5

]
. (4.163)

The last inequalities for β = 0 reduce to the inequalities found for SEC for Isotropic
Ricci Cosmology in Section 4.1.

Dominant Energy Condition

The Dominant Energy Condition in Tilted Ricci Cosmology reads

ρ̃ ≥ | p̃|
c2 . (4.164)

By substituting the expressions for the energy density ρ̃ (4.149) and the pressure
(4.150), one has

ρ cosh2 β +
pe f f

c2 sinh2 β ≥ 1
c2

∣∣∣∣pe f f +
1
3

(
ρ +

pe f f

c2

)
c2 sinh2 β

∣∣∣∣ , (4.165)

which is equivalent to

− ρ cosh2 β−
pe f f

c2 sinh2 β ≤
pe f f

c2 +
1
3

(
ρ +

pe f f

c2

)
sinh2 β ≤ ρ cosh2 β+

pe f f

c2 sinh2 β.

(4.166)
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Let us consider the first inequality given by

− ρ cosh2 β−
pe f f

c2 sinh2 β ≤
pe f f

c2 +
1
3

(
ρ +

pe f f

c2

)
sinh2 β. (4.167)

A simple rearrangement of the terms leads to(
ρ +

pe f f

c2

)(
cosh2 β +

1
3

sinh2 β

)
≥ 0. (4.168)

The second factor is always greater than zero, so the only condition is

ρ +
pe f f

c2 > 0, (4.169)

which gives the same inequalities as those found for the NEC for Isotropic Ricci
Cosmology in Section 4.1. Then, let us consider the second inequality in Eqn.(4.166)

pe f f

c2 +
1
3

(
ρ +

pe f f

c2

)
sinh2 β ≤ ρ cosh2 β +

pe f f

c2 sinh2 β. (4.170)

After similar steps as those done before, one has

3

[
1 + 2

3 sinh2 β

1− 2
3 sinh2 β

− w

]
≥ 4ξ̂5 − (4ξ̂5 − 2ξ̂6)q, (4.171)

provided that sinh2 β 6= 3
2 . For 2ξ̂ − ξ̂6 > 0, the last inequality becomes

q ≥ −3
2

1
2ξ̂5 − ξ̂6

[
1 + 2

3 sinh2 β

1− 2
3 sinh2 β

− w− 4
3

ξ̂5

]
, (4.172)

while for 2ξ̂ − ξ̂6 < 0, one has

q ≤ 3
2

1
|2ξ̂5 − ξ̂6|

[
1 + 2

3 sinh2 β

1− 2
3 sinh2 β

− w− 4
3

ξ̂5

]
. (4.173)

By repeating the same reasoning we follow in Section 4.1 to put the constraint (4.49)
onto the reduced second order transport coefficients for Λ for Isotropic Ricci Cos-
mology, from the NEC (4.37) which is still valid in Tilted Ricci Cosmology, the WEC
(4.157) and the violation of the SEC (4.162), for the reduced second order transport
coefficients ξ̂5Λ and ξ̂6Λ we have obtained the following constraint

3
2 cosh2 β + 1

1
q0
− 2ξ̂5Λ

1− q0

q0
< ξ̂6Λ < −2ξ̂5Λ

1− q0

q0
, (4.174)
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which for β = 0 reduces to Eqn.(4.49) and for the tilt angle β, one has

sinh2 β <
3

2
[
−q0ξ̂6Λ − 2ξ̂5Λ(1− q0)

] , (4.175)

which combined with the second inequality in Eqn.(4.174), gives us the condition

sinh2 β <
3
2

, (4.176)

for the tilt angle β in Tilted Ricci Cosmology.
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Chapter 5

Bayesian Inference and Monte Carlo
methods

In this chapter, we introduce the methods that are currently widely used in the field
of observational cosmology in order to select the model that best fits the available
data and put constraints on its parameters.
We start the chapter by introducing Bayesian Inference and its use for parameter
estimation and hypothesis testing.
In the second part of the chapter, we will introduce the computational methods
to determine posterior probability distributions of parameters and Bayesian factors
that go under the name of Monte Carlo methods.
In the following, we mainly follow the discussion in (Kurek, 2012). For more insights
and discussion on the statistical tools employed to test cosmological models, see the
textbook (Hobson, 2010) and the papers (Trotta, 2007; Verde, 2010; Li, 2013; Sharma,
2017; Trotta, 2017).

5.1 Frequentist vs Bayesian Probabilities

Two different approaches in the interpretation of probabilities have been using in
science.
The first one is the so-called frequentist approach. In this approach, the probability
of an event A is given by the ratio of the number of times it occurs over the total
number of events in the limit of an infinite number of experiments.
The underlying key feature in this approach is that the experiment producing the
events can be repeated many times in the same conditions.
However, if this approach is well suited for data analysis in particle physics this
does not apply to cosmology where we have a single Universe.
In cosmology, in fact we use a different framework to achieve knowledge from mea-
surements of physical interesting quantities. This framework is based on interpret-
ing a probability as a degree of belief to be assigned to a proposition, based on the
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available information at the time of the experiment.
This approach goes under the name of Bayesian Inference, named after the XVIII
century statistician Thomas Bayes.

5.2 Bayesian Inference

5.2.1 Probability

A proposition, usually denoted by a capital Latin letter, is a statement in which a
subject and a predicate are combined and to which a value of truth can be assigned.
In Aristotelian logic, initiated by Aristotle and further developed in ancient history,
a value of either true or false is attributed to propositions and logical combinations
of them.
One can extend Aristotelian logic by using plausibility reasoning, assigning a degree
of certainty to a proposition, dependent on what is considered to be known. The im-
portance of the plausibility reasoning lies on the fact that we can derive probability
from it.
The mathematical rules on which such plausibility reasoning rests have been stated
by Cox (Cox, 1946) in the form of mathematically rigorous axioms.
From these axioms one can derive the laws of probability, such as the sum rule and
the product rule.
Given I the proposition summarising all the information that one has before a prob-
ability is assigned to a proposition and denoted the conditional probability of a
proposition A given the prior information I as p(A|I) and the joint probability of
two propositions A and B given the information I as p(A, B|I), the sum rule and the
product rule can be expressed as

p(A|I) + p(Ā|I) = 1, (5.1)

with Ā the negation of proposition A and

p(A, B|I) = p(A|B, I)p(B|I), (5.2)

respectively.
It is straightforward to show that from Eqn.(5.2) the Bayes’ theorem follows

p(A|B, I) =
p(B|A, I)p(A|I)

p(B|I) , (5.3)
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and from both sum rule (5.1) and product rule (5.2) one obtains the marginalisation
rule

p(A|I) = p(A, B|I) + p(A, B̄|I), (5.4)

that can be generalised to the following expression

p(A|I) = ∑
k

p(A, Bk|I) = 1. (5.5)

where the propositions Bk constitute a discrete mutually exclusive and exhaustive
set of propositions such that

∑
k

p(Bk|I) = 1 with p(Bk|Bl, I) = p(Bk|I) for k 6= l. (5.6)

5.2.2 Random variables

The measurement measurement of a physical observable gives us an outcome that
can be considered a continuous random variable.
A continuous random variable X is a function mapping the sample space Ω of pos-
sible outcomes of a random process to the space of real numbers.
Such a continuous random variable has a probability distribution associated with it,
dubbed probability density function (pdf), denoted by p(X), such that p(x)dx gives
the probability that the continuous random variable X assumes the value in the in-
finitesimal interval [x, x + dx].
For the pdf, one can obtain the cumulative distribution function (cdf), i.e. the prob-
ability that the continuous random variable X takes a value smaller than x, as

P(x) =
∫ x

−∞
p(y)dy. (5.7)

5.3 Parameter Estimation

We can now use Bayesian Inference for parameter estimation, i.e. infer the value of
a parameter of a model given the observed data.
Let us consider a model M which is characterised by a set of parameters θ = {θ1, . . . , θn}
and we have some data d coming from an experiment.
The probability of the data d given the model M and the parameters θ is given by
the likelihood p(d|θ, M, I), where I represents the knowledge prior to the experiment.
In Bayesian Inference, we are interested in the posterior p(θ|d, M, I) which represents
the probability distribution of the set of parameters θ given the data d, the model M
and the prior information I.
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In order to obtain the posterior from the likelihood, we exploit the Bayes’ theorem
(5.3) derived above

p(θ|d, M, I) =
p(d|θ, M, I)p(θ|M, I)

p(d|M, I)
(5.8)

where p(θ|M, I) is the prior which represent what we know about the set of param-
eters θ before we have at our disposal the data d: for instance, this could be the uni-
form distribution of the parameters in the interval in which they are expected from
theoretical considerations or the posterior distribution of the parameters obtained
from a previous data analysis. In the denominator of the last equation, we have the
evidence p(d|M, I). The evidence does not depend on the parameters set θ, and can
be ignored for our purposes. The Eqn.(5.8) can thus be restated as a proportionality

p(θ|d, M, I) ∝ p(d|θ, M, I)p(θ|M, I). (5.9)

From the last equation shows that the posterior is proportional to the likelihood
weighted by the prior. So Bayes theorem give us a way to update our degrees of
belief due to the presence of new data.
Once the joint posterior for the set of the model parameters θ has been computed,
we have all the information about the variables given the data d.
We can then obtain the marginalised posterior distribution for one of the parameters
θi of the model, by integrating over all the other model parameters

p(θi, |d, M, I) =
∫ θmax

1

θmin
1

· · ·
∫ θmax

i−1

θmin
i−1

∫ θmax
i+1

θmin
i+1

· · ·
∫ θmax

N

θmin
N

p(θ|d, M, I)dθ1 . . . dθi−1dθi+1 . . . dθN.

(5.10)
Other useful information is the expectation value of each parameter θi, given by

µi = E [θi] =
∫ θmax

1

θmin
1

· · ·
∫ θmax

N

θmin
N

θi p(θ|d, M, I)dθ1 . . . dθN, (5.11)

and the uncertainties on the parameters from the covariance matrix that can com-
puted as

Σij ≡ E
[
(θi − µi)(θj − µj)

]
=
∫ θmax

1

θmin
1

· · ·
∫ θmax

N

θmin
N

(θi−µi)(θj−µj)p(θ1, . . . , θN|d, M, I)dθ1 . . . θN,

(5.12)
where the diagonal elements give the variance associated to each parameter θi and
the off-diagonal elements represent the correlations between two parameters θi and
θj.
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While the variance is a good measure of the uncertainty when the posterior is sym-
metric, in more general situations one uses the confidence interval, which is defined
to be the smallest interval within which a fraction γ of the posterior distribution is
contained

γθi =
∫ θu

i

θl
i

p(θi|d, M, I)dθi, (5.13)

where the integrand is the marginalised posterior distribution (5.10). In the litera-
ture, γθi is either chosen to be 0.68 or 0.95 corresponding to 1 and 2 standard devia-
tions for a Gaussian distribution, with a probability that the true estimate lies within
the interval

[
θl

i , θu
i
]

with a probability of 68% and 95%, respectively.

5.4 Hypothesis Testing

Let us suppose we have two competing models M and N, and we want to decide
which one describes the data better.
This decision goes under the name of hypothesis testing also known as model com-
parison or model selection and can be performed by using the methods of Bayesian
inference described above.
Let p(M|d, I) be the posterior probability of the model M given the data d. By using
the Bayes’ theorem (5.3), we have

p(M|d, I) =
p(d|M, I)p(M|I)

p(d|I) , (5.14)

where p(M|I) is the prior probability of model M given the initial available infor-
mation. The same can be obtained for the second model N.
Now, we can compute the odds ratio, i.e. the ratio of the posterior probabilities of the
two models

OM
N ≡

p(M|d, I)
p(N|d, I)

=
p(d|M, I)
p(d|N, I)

p(M|I)
p(N|I) , (5.15)

where the factor p(M|I)/p(N|I) is called the prior odds indicating our relative initial
belief in the models whereas the factor p(d|M, I)/p(d|N, I) is the Bayes factor,

BM
N =

p(d|M, I)
p(d|N, I)

. (5.16)

Usually, it is assumed that in the initially available information, there is nothing that
leads to a preference between the two models. Therefore, the only important factor
to be taken into account in order to do the hypothesis testing is the Bayes factor
(5.16). For that one needs to calculate the evidence for both models M and N in
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terms of the likelihood and the prior of the considered model. By using the Bayes
theorem (5.3), for the model M one can write

p(θ|d, M, I)p(d|M, I) = p(d|θ, M, I)p(θ|M, I). (5.17)

Then, one can marginalise both sides over θ, i.e.∫
p(θ|d, M, I)p(d|M, I)dθ =

∫
p(d|θ, M, I)p(θ|M, I)dθ. (5.18)

From the normalization of the posterior and the independence of the evidence p(d|M, I)
from the parameter set, one arrives at an expression for the evidence in terms of the
likelihood p(d|θ, M, I) and the prior p(θ|M, I), given by

p(d|M, I) =
∫

p(d|θ, M, I)p(θ|M, I)dθ (5.19)

known as the marginal likelihood.
The logarithm of the Bayes factor is used as information criterion to assess how bet-
ter a model M fits the data with respect to another model N, following the Jeffreys’
Scale (Trotta, 2007): if ln BM

N < 1, there is no significant evidence in favour of model
M; if 1 < ln BM

N < 2.5, the evidence in favour of the model M is substantial; if
2.5 < ln BM

N < 5, there is strong evidence in favour of model M; if ln BM
N > 5, the

evidence is decisive, while negative values of ln BM
N can be instead interpreted as

evidence in favour of model N.
There are two important issues one needs to underline when doing hypothesis test-
ing in the framework of Bayesian Inference, making evident the strengths of this
approach with respect to the frequentist approach.
The first one is related to the fact that the model with highest evidence will not be
necessarily the preferable one between the two models because the prior odds is in-
cluded in the odds ratio. We can have, in fact, the case in which prior probabilities
of models M and N are different. For instance, if prior belief in model is much lower
compared to the other model N, the model M needs to have a particularly good fit
to the data.
The second issue regards the different complexities that two models can have. In
general, in Bayesian Inference a model with more parameters has not always higher
evidence than that of a model with less parameters. Therefore, one has not the free-
dom to add arbitrary complexity to a model without being penalised, in accordance
with Occam’s razor.
Even in hypothesis testing, the frequentist and the Bayesian approaches diverge.
In the frequentist approach, one accepts or rejects a null hypothesis H0 based on
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the p-value, i.e. the hypothesis H0 is assumed to be true and one determines how
unlikely are the data given this assumption. As illustrated, instead, the Bayesian
approach takes the view that does not make sense to reject a model unless there is
an alternative model with which the first model can be compared.

5.5 Markov Chain Monte Carlo methods

The posterior probability distribution, which plays a crucial role in parameter esti-
mation and hypothesis testing, as seen in the last sections, most of the times lacks a
closed analytical form. Therefore, one needs computational methods to find it. The
most widespread procedure used in performing this task is by resorting to Markov
Chain Monte Carlo (MCMC) methods. The purpose of a MCMC algorithm is to
construct a sequence of points, called a chain, in the parameter space, such that the
density of such points is proportional to the posterior pdf. These points are called
samples. In the following, we will introduce some basic definitions and the algo-
rithm we have used to obtain the posterior pdf in our data analysis of some models
of Ricci Cosmology.

5.5.1 Markov Chain

A Markov Chain is defined as a sequence of random variables {X(0), X(1), . . . , X(M−1)}
such that the probability of the (t + 1)–th element in the chain only depends on the
value of the t–th element. The crucial property of Markov chains is that they can be
shown to converge to a stationary state, i.e. which does not change with t, where
successive elements of the chain are samples from the distribution we want to re-
construct, in our case the posterior p(θ|d, M, I).
The generation of the elements of the chain is probabilistic in nature, and is de-
scribed by a transition probability T(θ(t), θ(t+1)), giving the probability of moving
from point θ(t) to point θ(t+1) in parameter space. A sufficient condition to obtain a
Markov Chain is that the transition probability satisfy the detailed balance condition

p(θ(t)|d)T(θ(t), θ(t+1)) = p(θ(t+1)|d)T(θ(t+1), θ(t)), (5.20)

from which it is straightforward to see that the ratio of the transition probabilities is
inversely proportional to the ratio of the posterior probabilities at the two points.
Once samples from the posterior pdf have been gathered, one can obtain, one can
employ usual numerical methods to derive expectation values (5.11) for the model
parameters, covariance matrices (5.12), marginalised posterior distributions (5.10)
and Bayes factors (5.16), used for Bayesian Inference as outlined in the last sections.



50 Chapter 5. Bayesian Inference and Monte Carlo methods

5.5.2 The Metropolis-Hastings algorithm

The MCMC algorithm we have used in our data analyses of Ricci Cosmology mod-
els, we will present in Chapters 7 and ?? to sample from the posterior distribution is
the Metropolis-Hastings algorithm. This algorithm is one of the most widely used
algorithms and has the following steps:

1. Choose randomly an initial point θ(0) in parameter space, with associated pos-
terior probability

p0 = p(θ(0)|d, M, I); (5.21)

2. Given a proposal distribution q(θ(0), θ(c)), draw a candidate point θ(c) from it.
For example, the proposal distribution can be a Gaussian centered around the
current point with a fixed width;

3. Compute the posterior distribution at the new candidate point

pc = p(θ(c)|d, M, I); (5.22)

4. Calculate the acceptance probability as

α(θ(0), θ(c)) = min

(
pcq(θ(c), θ(0))

p0q(θ(0), θ(c))
, 1

)
(5.23)

with the transition probability T(θ(0), θ(c)) appearing in the detailed balance
condition (5.20), given by

T(θ(0), θ(c)) = q(θ(0), θ(c))α(θ(0), θ(c)); (5.24)

5. Pick a random number u from a uniform distribution in the interval [0, 1)

– If u ≤ α(θ(0), θ(c)), then accept the candidate point,

– If u > α(θ(0), θ(c)), then reject the candidate point;

6. If the candidate point is rejected, go back to the step 2 with the old point.
Otherwise, restart from step 2 with the new point in parameter space.

A simplified version of this algorithm, the Metropolis algorithm uses a symmetric
proposal distribution with the acceptance probability simplified to

α = min
(

pc

p0
, 1
)

. (5.25)
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A relevant issue for the efficiency in the exploration of the parameter space for the
Metropolis-Hastings algorithm regards the optimal scale of the proposal distribu-
tion: if the scale of q is too small compared to that of the posterior distribution we
are interested in, the algorithm spends too much time locally; if instead the scale of
q is too large, we could miss some features of the posterior distribution (Sharma,
2017).
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Chapter 6

Cosmological Probes of Dark Energy

In this chapter we review the physics and the observables of the cosmological probes
that currently provide us the most relevant sets of data to reconstruct the expan-
sion history of our Universe such as Type Ia Supernovae (SNIa), Gamma-Ray Bursts
(GRBs), Cosmic Chronometers (CCs), Strong Lensed Quasars (QSOs), Baryon Acous-
tic Oscillations (BAO) and Cosmic icrowave Background (CMB), that we will use to
put observational constraints on the parameters in the Isotropic Ricci Cosmology
and in the Ricci Vacuum Cosmology models in the following chapters.
For each probe we are interested in the distances of such objects from us because
such distances depend on the cosmological model we consider. Therefore measur-
ing such distances allow us to choose the model best describing our Universe and
at the same time put constraints on its parameters.

6.1 Cosmic distances

The two fundamental cosmic distances from which all other cosmological observ-
ables are built are the luminosity distance and the angular diameter distance.

6.1.1 Luminosity distance

Let us consider a luminous cosmological object with an absolute luminosity L, i.e.
emitted total power (energy per second). An observer will measure an apparent
luminosity l

l =
L

4πd2
L

(6.1)

at a distance dL from the luminous source. Such a distance is the so-called lumi-
nosity distance. Such luminosity distance in an expanding flat Universe can be ex-
pressed as (Ellis, Maartens, and MacCallum, 2012)

dL(z) = c(1 + z)
∫ z

0

dz
′

H(z′)
(6.2)
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Such a distance can be written in terms of the apparent magnitude m and the abso-
lute magnitude M of the luminous cosmological object whose apparent luminosity
l is measured.
The apparent magnitude m of such astrophysical source is defined as (Perivolaropou-
los and Skara, 2021)

m = −2.5 log10

(
l
l0

)
, (6.3)

where l0 is a reference apparent luminosity. The absolute magnitude M of the same
source is the apparent magnitude the source would have if it were placed at a dis-
tance of 10 pc from the observer.
By using the apparent magnitude (6.3) and the definition of the absolute magnitude
M, one obtains the following expression

l10

l
= 100

m−M
5 (6.4)

where l10 is the apparent luminosity of the source as it were at a distance of 10 pc
from us.
Thus, from the expression of the apparent luminosity (6.1), one has

m−M = 5 log10

(
dL

10

)
(6.5)

where the difference m−M defines the distance modulus µ. A standard candle is an
astrophysical object whose absolute magnitude is known. Therefore, for a standard
candle, once measured its apparent magnitude, one has its luminosity distance.

6.1.2 Angular diameter distance

Let us consider a source with a physical scale r that subtends an angle θ in the sky
as shown in Fig.(6.1). Such an astrophysical source is called standard ruler and its
physical angular diameter distance DA is defined as

DA(z) =
r
θ

, (6.6)

where the angle θ is assumed to be small.
In an expanding flat Universe the physical angular diameter distance can be ex-
pressed as (Dodelson, 2003)

DA(z) =
c

(1 + z)

∫ z

0

dz
′

H(z′)
(6.7)
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which is related to the luminosity distance (6.2) by

dL(z) = (1 + z)2DA(z) (6.8)

which is the so-called reciprocity formula (Weinberg, 1972).

FIGURE 6.1: Angular diameter distance for a source of physical scale r
from (Perivolaropoulos and Skara, 2021)

6.2 Type Ia supernovae

One of the most prominent cosmological probe that, as mentioned in Chapter 2,
have furnished the first evidence for the accelerated expansion of our Universe are
the Type Ia Supernovae (SnIa).
The physical mechanisms at their origin are still debated but there is some consen-
sus on the fact that they are thermonuclear explosions of a rotating carbon-oxygen
white dwarf, approaching the Chandrasekhar mass limit (∼ 1.4M�): this is the mass
at which the gravitational attraction is not compensated by the pressure due to nu-
clear fusion processes inside it and consequently the star collapses and explodes.
For a white dwarf to reach such mass limit, the presence of a companion orbiting
star, either another white dwarf or a main sequence star, e.g. a red giant, from which
the carbon-oxygen white dwarf can accrete matter, is needed.
This hypothesis is supported mainly by the absence of hydrogen and helium lines
and the presence of ionized silicon lines around the maximum in the light spectra
produced by these astrophysical objects. For more details on the SnIa spectra see
the reference (Parrent, Friesen, and Parthasarathy, 2014).
The usefulness of this kind of supernovae resides on the fact that they are standard-
izable astrophysical objects, i.e. objects whose absolute brightness is correlated with
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other observables and once they are standardized they can be used as standard can-
dles.
Not all the SnIa have the same spectrum and therefore cannot be immediately used
as standard candle but have slightly different peak apparent magnitudes m which
depend on the observed stretch s and colour C via the modified relation

5 log10

[
H0

c
dL(z, θ)

]
= m + αs− βC−M, (6.9)

whereM is the Hubble diagram offset

M≡ M + 5 log10

[
c

H0 × 1Mpc

]
+ 25, (6.10)

which is a combination of the Hubble parameter H0 and the absolute magnitude M.
The last parameter can be determined through the calibration by using the so-called
cosmic distance ladder method.
In this approach each step of the distance ladder uses parallax methods and/or the
known intrinsic luminosity of a standard candle source to determine the absolute
luminosity of a more luminous standard candle residing in the same galaxy. Thus
highly luminous standard candles are calibrated for the next step in order to reach
out to high redshift luminosity distances. Different astrophysical objects can be used
for this purpose:

• Cepheids are primary distance indicators whose distance is determined by
means of trigonometric parallex methods. Their use as standard candles is
possible because their luminosities are correlated with their periods of vari-
ability through the Leavitt law.

• The Tip of the Red Giant Branch (TRGB) stars in the Hertzsprung-Russell dia-
gram are stars that have nearly exhausted the hydrogen in their cores and have
just started to burn helium. By using parallax methods, one can standardise
their brightness.

• Miras are highly evolved low mass variable stars at the tip of asymptotic gi-
ant branch (AGB) stars, whose period-luminosity relation can be calibrated by
using the water megamaser as distance indicator

For more details on these steps of the cosmic distance ladder and other ways to
calibrate SnIa, see (Perivolaropoulos and Skara, 2021), and references therein.
The sample of calibrated supernovae that is currently widely used is the Pantheon
sample containing 1048 SnIa in the redshift interval 0.01 < z < 2.26 (Scolnic et al.,
2018).
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6.3 Gamma-Ray Bursts

Another cosmological probe that can be used as a standard candle is given by the
Gamma-Ray Bursts (GRBs). They have been proposed as a complementary probe to
SnIa because their high energy photons in the γ-ray band are only slightly affected
by dust extinction making them observable well beyond the redshift range of the
SnIa, up to redshift z ∼ 8− 9.
Even if the first detection of a GRB dates back to 1967 by the Vela satellites (Klebe-
sadel, Strong, and Olson, 1973), their physical origin is still debated. One of the
most recent discovered GRB has been detected in conjunction with the gravitational
wave signal GW170817 observed by the LIGO and Virgo detectors in 2017 (Abbott
et al., 2017), marking the beginning of the multimessenger astronomy.
Analogously to the SnIa, they are not standard candles by themselves, but they must
be calibrated.
Following (Liu and Wei, 2015), one can notice that the possibility to use GRBs as
standard candles is due to the existence of an empirical relation between the cos-
mological rest-frame spectrum peak energy Ep,i = Ep,obs(1 + z) and the isotropic
equivalent radiated energy Eiso, given by

Ep,i = KEm
iso (6.11)

with K a constant of proportionality and m a constant exponent. The isotropic equiv-
alent radiated energy is given by

Eiso = 4πd2
LSbolo(1 + z)−1, (6.12)

where dL is the luminosity distance of the GRB and Sbolo. In order to calibrate GRBs,
one uses the Amati relation

log
Eiso

erg
= λ + b log

Ep,i

300keV
(6.13)

with λ and b are constants to be determined. By using the equation (6.5), one can
write the luminosity distance dL in terms of the distance modulus µ.
After the first attempts made in (Liang and Zhang, 2008; Kodama et al., 2008) and
in (Capozziello and Izzo, 2010), only with the work (Liu and Wei, 2015), in which
GRBs have been calibrated in a cosmology-independent way by means of Padé
approximant, a generalization of Taylor expansion, and use of the Union2.1 SnIa
dataset (Suzuki et al., 2012) have become useful as standard candles, giving rise to
the Mayflower sample, comprising 79 GRBs in the redshift range 1.44 < z < 8.1.
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6.4 Cosmic Chronometers

Alongside standard candles and standard rulers, there exists another technique not
based on the cosmic distance ladder used to determine the history of our Universe,
independent of the early-Universe physics: Cosmic Chronometers or standard clocks.
However, analogously to SnIa and GRBs, they are independent of any assumption
on the cosmological model describing the Universe.
Astrophysical objects that can be used as CCs are those objects whose evolution
history is known. An example of these objects is given by passively-evolving Early-
Type Galaxies (ETGs) which are galaxies characterised by a low star formation rate
and old stellar populations (Jimenez and Loeb, 2002).
As described in the reference above, differently from other cosmological probes,
we can acquire direct information about the Hubble function over redshift ranges,
through the formula

H(z) = − 1
1 + z

dz
dt

. (6.14)

The last expression comes from the definition of the scale factor in terms of the red-
shift

a(t) =
a0

1 + z
(6.15)

for a0 = 1.
If we measure the age difference ∆t between two passively evolving ETGs, sepa-
rated by a small redshift interval ∆z, then from the Hubble function (6.14) it is pos-
sible to infer the actual expansion rate H(z) at each redshift and thus the Hubble
constant H0.
The complete dataset of CCs can be found in (Moresco et al., 2022).

6.5 Strong Lensed Quasars

Strong gravitationally lensed quasars constitute another cosmological probe to con-
strain the parameters of a cosmological model.
Strong gravitational lensing was first proposed in (Refsdal, 1964) and it is due to the
gravitational deflection of light rays coming from a luminous source when a mass
distribution, for instance a massive galaxy or a cluster of galaxies, exists along the
line of sight between us and the source. The light rays follow different paths arriv-
ing to us at different times and producing multiple images of the source. For an
extensive review on this topic, see (Suyu et al., 2018).
Here, we will follow (Perivolaropoulos and Skara, 2021) in order to briefly illustrate
how to constrain the cosmological parameters θ of a cosmological model through
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the time-delay distance.
Given the angular positions of two images of the same source θA and θB, the time
delay ∆tAB between the light rays forming them is given by

∆tAB =
1 + zL

c
DLDS

DLS
[φ(θA, β)− φ(θB, β)] , (6.16)

where β is the angular position of the source, zL is the lens redshift, DL, DS and DLS

are the angular diameter distance (6.7) to the lens, to the source and between the
lens and the source, respectively, and φ(θ, β) is the Fermat potential given by

φ(θ, β) =
(θ − β)2

2
− ψ(θ) (6.17)

with ψ(θ) the effective lensing potential in the image direction.
The time delay distance D∆t can be obtained from Eqn.(6.16) dividing the time delay
by the difference of the Fermat potential in the images directions θA and θB

D∆t = (1 + zL)
DLDS

DLS
(6.18)

The most recent available dataset of strong lensed quasars is the TDCOSMO sample
described in (Birrer et al., 2020) which consists of seven strong gravitationally lensed
quasars with multiple images, six of which are from H0LiCOW collaboration (Suyu
et al., 2017).

6.6 Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO) provide a standard ruler evolving with the Uni-
verse since recombination and constitute a very useful cosmological probe in con-
straining cosmology. The physics on which BAO are based is described in the next,
following (Bassett and Hlozek, 2009; Weinberg et al., 2013; Perivolaropoulos and
Skara, 2021; Suyu et al., 2018).
Let us consider an overdense region of the primordial plasma made of tightly cou-
pled photons and baryons, comprising electrons and protons, interacting via Comp-
ton scattering. Matter outside this region is attracted towards it, while the flow of
heat in the opposite direction produces an outward pressure. The interplay between
these two forces gives rise to damped oscillations of this plasma, analogous to spher-
ical sound waves moving out of the overdensity with a relativistic sound speed

cs(z) =
c√

3(1 + R̄b(1 + z)−1)
, (6.19)
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with R̄b, the baryon-to-photon density ratio parameter, given by

R̄b = 31500Ωbh2(TCMB/2.7)−4 (6.20)

with the CMB temperature TCMB = 2.726 K.
At the same time, the non-relativistic CDM, which interacts only gravitationally
with baryons, remains near the origin of the overdensity. As soon as the tempera-
ture decreases, the Hubble rate overcomes the scattering rate between photons and
baryons (decoupling) and protons and electrons start to join forming neutral atoms
(recombination).
Therefore, photons start to propagate freely, leaving behind overdense shells of
baryons, corresponding to the sound waves wavelengths while baryons and CDM
pull each other.
Such a process happens for each overdensity present in the Universe and the dis-
tance to the first shell such perturbations travel before the decoupling, is the same
for all overdensities and it is referred to as the sound horizon.
This phenomenon was detected for the first time in 2005 in the galaxy power spec-
trum by the 2dF Galaxy Redshift Survey (2dFGRS) (Cole et al., 2005) and by Sloan
Digital Sky Survey (SDSS) (Eisenstein et al., 2005), observing greater numbers of
galaxies separated by the sound horizon distance.
The sound horizon scale as standard ruler scale is the comoving sound horizon scale
at the drag epoch, given by

rs(zd) =
∫ ∞

zd

cs(z)
H(z)

dz. (6.21)

The drag epoch occurs when gravitational instabilities in baryons cannot be further
prevented by the photon pressure shortly later than decoupling because Ωb is small
at the drag redshift zd which can be estimated numerically as done in (Eisenstein
and Hu, 1998)

zd = 1291
ω0.251

m
1 + 0.659 ω0.828

m
[1 + b1 ωb2

b ], (6.22)

with ωm = Ωmh2 and ωb = Ωbh2 and the coefficients b1 and b2 given by

b1 = 0.313 ω−0.419
m [1 + 0.607 ω0.6748

m ], (6.23)

and
b2 = 0.238 ω0.223

m , (6.24)
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respectively. Given a sample of galaxies, by deriving the sound horizon at the drag
epoch rs(zd) from the peaks in the CMB angular power spectrum, clustering in both
radial and transverse directions gives us information on the Hubble parameter at the
effective redshift of the galaxy sample, and on its angular distance to that redshift,
respectively.
More explicitly, in radial direction one measures the redshift extent ∆zs which is
related to the Hubble function via

∆zs =
H(z)rs(zd)

c
, (6.25)

while in the transverse direction one measures the angular extent ∆θs, related to the
angular diameter distance via

∆θs =
rs(zd)

DA(z)
. (6.26)

Instead of considering these observables independently, in early BAO measure-
ments (Blake et al., 2012), the following combinations of radial and transverse in-
formation on galaxy clustering of the above observables were used:

• the acoustic parameter

A(z, θ) = 100
√

ωm
DV(z, θ)

cz
, (6.27)

where DV is the volume distance given by

DV(z, θ) =

[
(1 + z)2D2

A(z, θ)
cz

H(z, θ)

]1/3

, (6.28)

• and the Alcock-Paczynski distortion parameter

F(z, θ) = (1 + z)
DA(z, θ)H(z, θ)

c
. (6.29)

6.7 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a uniform isotropic radiation with
thermal black body spectrum at a temperature of TCMB = 2.72548 ± 0.00057 K
which has been discovered accidentally by American astronomers Arno Penzias and
Robert Wilson in 1965 (Penzias and Wilson, 1965), representing one of the firmest
proof we have on the Hot Big Bang.
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Later studies conducted with satellites COBE1, WMAP2 and Planck3 have confirmed
its uniformity, discovering the presence of small temperature anisotropies at the
same time, due to small inial inhomogeneities in the matter densities.
The physical mechanism that has generated such radiation is well understood.
As outlined in the previous section, before recombination, electrons and baryons are
tightly coupled to photons. As the temperature decreased with the adiabatic expan-
sion of the Universe, it became favourable for electrons to combine with protons,
forming hydrogen atoms. With the electrons trapped in neutral hydrogen atoms,
the photons can stream away.
What we see in the sky is the so-called last scattering surface at which electrons lastly
experienced Thomson scattering with electrons. Since then, such photons thermal-
ized giving rise to the thermal black body radiation we detect.
The temperature anisotropies encoded in the CMB angular power spectrum are a
great source of information not only about the inflationary parameters but also for
Dark Energy. The reason behind this is that, even if the physics involved in the CMB
is not affected by Dark Energy, the last matter component affects the distance to the
epoch at which recombination takes place, and hence the angular scale of the CMB
fluctuations, as for BAO.
In order to put contraints on the new parameters appearing in Isotropi Ricci Cosmol-
ogy and Ricci Vacuum Cosmology, we will not use the entire angular power spec-
trum but we will consider only the shift parameters (Wang and Mukherjee, 2007):

• the physical baryon density parameter ωb,

• the sound horizon angular scale at recombination defined as

la(θ) ≡ π
DM(z∗, θ)

rs(z∗, θ)
, (6.30)

• the scaled distance to recombination given by

R(θ) ≡
√

ΩmH2
0

DM(z∗, θ)

c
. (6.31)

The comoving distance DM and the sound horizon rs are evaluated at the recombi-
nation redshift z∗ (Hu and Sugiyama, 1996)

z∗ = 1048[1 + 0.00124 ω−0.738
b ](1 + g1 ω

g2
m ), (6.32)

1https://lambda.gsfc.nasa.gov/product/cobe/spacecraft_description.html
2https://map.gsfc.nasa.gov
3https://www.esa.int/Enabling_Support/Operations/Planck

https://lambda.gsfc.nasa.gov/product/cobe/spacecraft_description.html
https://map.gsfc.nasa.gov
https://www.esa.int/Enabling_Support/Operations/Planck
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where the factors g1 and g2 read

g1 =
0.0783 ω−0.238

b

1 + 39.5 ω−0.763
b

, (6.33)

and
g2 =

0.560
1 + 21.1 ω1.81

b
, (6.34)

respectively.
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Chapter 7

Ricci Cosmology tested against
astronomical data

In this chapter, we present and discuss the results of the fit of Isotropic Ricci Cosmol-
ogy whose derivation is presented in Section 4.1 to observational data. We discuss
the preliminary assumptions made to assess the viability of the model. Then, we
report the data used for the fit and the results we have obtained from it. In the last
section, we elaborate on these results.

7.1 Assumptions

In order to examine the feasibility of the Isotropic Ricci Cosmology model to de-
scribe our Universe, and determine the relative importance of the two contributions
from the Ricci scalar (4.10) and the time-time component of the Ricci tensor (4.11) to
the non-equilibrium effective pressure (4.1) for the fluids filling in the Universe, we
take into account four special cases of this model, making four different ansätze on
the constant reduced second order transport coefficients (4.15):

• in Ansatz 1, each term in the effective pressure (4.1) has the same effect in
the change of the scaling of dust and cosmological constant while radiation is
assumed to remain unaffected by the modifying pressure terms;

• in Ansatz 2, together with dust and cosmological constant, radiation also devi-
ates from conformality due to the pressure terms in the same way as described
in Ansatz 1;

• in Ansatz 3, the second order transport coefficients characterising the responses
to both terms in the effective pressure (4.1) are equal for each matter compo-
nents they affect, dust and cosmological constant;
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• in Ansatz 4, besides to dust and cosmological constant, radiation is also af-
fected by the Ricci pressure terms in (4.1) in the same fashion as in Ansatz
3.

In Table 7.1, we report the ansätze we have just discussed, while in Table 7.2, we
show the priors one has on the deviation parameters δm, δr and δΛ once the different
ansätze are made, coming from the physical bound of entropy growth from the Sec-
ond Law of Thermodynamics for a closed Universe we have considered in Section
4.1. For a complete derivation of such priors see Appendix A.

Assumptions on ξ̂5 and ξ̂6

Ansatz 1 ξ̂5r = ξ̂6r = 0 and ξ̂5m = ξ̂5Λ ≡ ξ̂50, ξ̂6m = ξ̂6Λ ≡ ξ̂60

Ansatz 2 ξ̂5r = ξ̂5m = ξ̂5Λ ≡ ξ̂50 and ξ̂6r = ξ̂6m = ξ̂6Λ ≡ ξ̂60

Ansatz 3 ξ̂5r = ξ̂6r = 0 and ξ̂5m = ξ̂6m, ξ̂5Λ = ξ̂6Λ

Ansatz 4 ξ̂5r = ξ̂6r, ξ̂5m = ξ̂5Λ, ξ̂6m = ξ̂6Λ

TABLE 7.1: The table reports the four different ansätze on the reduced
second order transport coefficients we have considered.

Priors on δm, δr and δΛ

Ansatz 1 δr = 0, δm ≤ 0 and δm ≤ δΛ < 3 + δm

Ansatz 2 δΛ = 4δm − 3δr, δm ≤ 0 and −1 + δm < δr ≤ δm

Ansatz 3 δr = 0, δm ≤ 0 and δΛ ≥ 0

Ansatz 4 δr ≤ 0, δm ≤ 0 and δΛ ≥ 0

TABLE 7.2: The table reports the priors on the deviation parameters
δm, δr and δΛ we have used in our data analysis. These priors are de-

rived in Appendix A.

7.2 Data & Statistical Analysis

Data

The data from the cosmological probes described in Chapter 6 we have used in the
fit of the Isotropic Ricci Cosmology model described in Section 4.1 are given by:
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• Type Ia Supernovae (SnIa) from the Pantheon catalogue (Scolnic et al., 2018);

• Gamma Ray Bursts (GRBs) from the Mayflower sample (Liu and Wei, 2015);

• Cosmic Chronometers (CC) (Gómez-Valent and Amendola, 2019);

• Strong Lensed Quasars fro H0LiCOW collaboration (Wong et al., 2020);

• measurements of BAO from the following surveys and samples

– WiggleZ Dark Energy Survey (Blake et al., 2012);

– the twelfth data release (DR12) of the Baryon Oscillation Spectroscopic
Survey (BOSS) of the third phase of the Sloan Digital Sky Survey (SDSS-
III) (Alam et al., 2017);

– CMASS galaxy catalogue of the SDSS-III BOSS DR12 (Nadathur et al.,
2019);

– quasar sample of the fourteenth data release (DR14) of the extended Baryon
Oscillation Spectroscopic Survey (eBOSS) of the fourth phase of the Sloan
Digital Sky Survey (SDSS-IV) (Ata et al., 2018);

– correlation of Lyman-α (Lyα) forest absorption and quasars from the SDSS
DR14 (Blomqvist et al., 2019; Sainte Agathe et al., 2019)

• measurements of CMB shift parameters (Zhai and Wang, 2019).

Statistical Analysis

For our data analysis, we have considered a posterior distribution made of

• a prior probability which put together the flat priors reported in Table 7.2 and
the priors on the Hubble parameter, h = H0/100, 0 < h < 1 and on the
dimensionless energy densities for baryons Ωb and dust Ωm, 0 < Ωb < Ωm <

1,

• and the likelihood given by

L(d|θ, M) ∝ e−χ2/2, (7.1)

where M stands for one of the cases corresponding to the different ansätze in Table
7.1 and ΛCDM and the total χ2 is the sum of each χ2 associated to each set of data d
from the cosmological probe.
For the data d and the total χ2, we have considered two different combinations of
data sets in order to check whether in Isotropic Ricci Cosmology there is a relief
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of the Hubble tension at the background level: we have fitted the four cases of the
Isotropic Ricci Cosmology model against the full data set, including all the data sets
above, and the late time data set including only late time measurements of cosmo-
logical observables (SNeIa, CC, H0LiCOW, GRBs, BAO from WiggleZ), with the χ2

given by

χ2
f ull = χ2

SNIa + χ2
GRB + χ2

CC + χ2
H0LiCOW + χ2

WiggleZ + χ2
BAO + χ2

CMB (7.2)

and
χ2

late = χ2
SNIa + χ2

GRB + χ2
CC + χ2

H0LiCOW + χ2
WiggleZ, (7.3)

respectively.
We have employed our own implementation of the Metropolis-Hastings algorithm.

7.3 Results from the fits

The results of the fits of our model for the four ansätze are reported in the Tables 7.3,
7.4, 7.5 and 7.6.
At 1σ level, one can notice that the values of the cosmological parameters are in-
distinguishable from those for ΛCDM for all the four ansätze we have made. From
this, one can immediately conclude that for none of the ansätze we have a solution
or a relief of the Hubble tension.
For the parameters of the Isotropic Ricci Cosmology model, we have found upper
or lower bounds, except for δΛ for the ansätze 1 and 2 which is compatible with zero
when one considers the late-time data set. As can be seen from the Tables 7.3, 7.4,
7.5 and 7.6, the observational bounds on the deviation parameters and thus the indi-
rect constraints on the reduced second order transport coefficients ξ̂5 and ξ̂6 overlap
with one another, showing that there is no substantial difference among the cases of
the Isotropic Ricci Cosmology model corresponding to the different ansätze.
These observational bounds are less strict when one takes into account only the late-
time data sets than those found when one includes in the fit also the early-time data
sets which thus show a more constraining power.
In particular, regarding the reduced second order transport coefficients, the fits of
the model with the first two ansätze imply that ξ50 is compatible with zero, while for
ξ60, one should take into account that, together with the lower bounds found from
the fit, it holds ξ60 < 0 from the physical requirement of the increase of entropy for
both cases.
For the last two ansätze, only upper or lower bounds can be put on the reduced sec-
ond order transport coefficients ξ̂5 and ξ̂6 with significantly milder bounds coming
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from the fit with only late time data set taken into account.
For the deviation parameters δm, δr and δΛ, in Figures 7.1 and 7.2, we show the 1σ

and 2σ contour plots of the posterior, obtained from the fit with the full data set,
projected in the parameter plane δΛ - δm, and in the parameter plane δr - δm, respec-
tively. From the comparison of these contours, we confirm that there is no significant
observational difference between the ansätze we have considered.
Finally, from the negative values of the Bayesian factors reported in the Tables, one
can conclude that none of the four cases corresponding to the four different ansätze
in Table 7.1 of Isotropic Ricci Cosmology model has a better fit than ΛCDM to our
data sets.
Despite this conclusion, by inspecting the Bayesian factor, one can also notice that
for all the ansätze taken into account, the combination of the late-time data sets used
in the fit makes Isotropic Ricci Cosmology less disfavoured with respect to ΛCDM
than the full data set does, implying that the deviation from usual redshift scaling
and thus departure from equilibrium, for the matter components filling in the Uni-
verse are more relevant for its late-time accelerated phase.

ΛCDM ΛCDM Ansatz 1 Ansatz 1

full late full late

h 0.673+0.003
−0.003 0.713+0.013

−0.012 0.668+0.004
−0.005 0.713+0.014

−0.014

Ωm 0.319+0.005
−0.005 0.292+0.017

−0.016 0.319+0.005
−0.005 0.307+0.023

−0.022

δm > −0.001 > −0.241

δΛ < 0.003 0.1410.192
−0.153

ΩΛ 0.681+0.005
−0.005 0.708+0.016

−0.017 0.681+0.005
−0.005 0.693+0.022

−0.023

ξ50(N) 0.969.57
−8.69 × 1038 −7.086.37

−6.89 × 1040

ξ60(kg/m) > −4.66× 1022 > −7.90× 1024

lnBi
j 0 0 −1.56+0.04

−0.04 −0.59+0.03
−0.03

TABLE 7.3: In the table, we report the constraints on the parameters
of Isotropic Ricci Cosmology with ansatz 1 and ΛCDM, both tested

against the same full and late data sets.
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ΛCDM ΛCDM Ansatz 2 Ansatz 2

full late full late

h 0.673+0.003
−0.003 0.713+0.013

−0.012 0.667+0.005
−0.005 0.713+0.013

−0.013

Ωm 0.319+0.005
−0.005 0.292+0.017

−0.016 0.319+0.005
−0.005 0.306+0.023

−0.022

δm > −0.0007 > −0.244

δr > −0.003 > −0.388

δΛ < 0.007 0.151+0.189
−0.160

ΩΛ 0.681+0.005
−0.005 0.708+0.016

−0.017 0.681+0.005
−0.005 0.694+0.022

−0.023

ξ50(N) 0.791.59
−0.93 × 1039 −6.976.27

−6.85 × 1040

ξ60(kg/m) > −5.39× 1022 > −8.13× 1024

lnBi
j 0 0 −1.56+0.04

−0.03 −0.59+0.02
−0.03

TABLE 7.4: In the table, we report the constraints on the parameters
of Isotropic Ricci Cosmology with ansatz 2 and ΛCDM, both tested

against the same full and late data sets.

FIGURE 7.1: 1σ and 2σ contour plots in the parameter plane δΛ - δm
for the four ansätze (Ansatz 1 - blue; Ansatz 2 - grey; Ansatz 3 - green;

Ansatz 4 - red)
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ΛCDM ΛCDM Ansatz 3 Ansatz 3

full late full late

h 0.673+0.003
−0.003 0.713+0.013

−0.012 0.667+0.004
−0.007 0.711+0.013

−0.013

Ωm 0.319+0.005
−0.005 0.292+0.017

−0.016 0.319+0.005
−0.005 0.304+0.023

−0.021

δm > −0.001 > −0.256

δΛ < 0.004 < 0.277

ΩΛ 0.681+0.005
−0.005 0.708+0.016

−0.017 0.681+0.005
−0.005 0.696+0.021

−0.023

ξ5m(N) > −1.03× 1039 > −2.53× 1041

ξ5Λ(N) < 2.35× 1039 < 1.55× 1041

ξ6m(kg/m) > −1.14× 1022 > −2.20× 1024

ξ6Λ(kg/m) < 2.62× 1022 < 1.72× 1024

lnBi
j 0 0 −1.53+0.03

−0.04 −0.68+0.02
−0.03

TABLE 7.5: In the table, we report the constraints on the parameters
of Isotropic Ricci Cosmology with ansatz 3 and ΛCDM, both tested

against the same full and late data sets.

FIGURE 7.2: 1σ and 2σ contour plots in the parameter plane δr - δm for
the two ansätze in which δr 6= 0 (Ansatz 2 - grey; Ansatz 4 - red)
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ΛCDM ΛCDM Ansatz 4 Ansatz 4

full late full late

h 0.673+0.003
−0.003 0.713+0.013

−0.012 0.701+0.012
−0.011 0.712+0.013

−0.013

Ωm 0.319+0.005
−0.005 0.292+0.017

−0.016 0.322+0.005
−0.005 0.303+0.023

−0.020

δm > −0.002 > −0.245

δr > −0.001 > −199

δΛ < 0.091 < 0.269

ΩΛ 0.681+0.005
−0.005 0.708+0.016

−0.017 0.678+0.005
−0.005 0.697+0.020

−0.023

ξ5m(N) > −1.86× 1039 > −2.42× 1041

ξ5r(N) > −1.76× 1039 > −3.18× 1042

ξ5Λ(N) < 4.95× 1040 < 1.50× 1041

ξ6m(kg/m) > −2.08× 1022 > −2.72× 1024

ξ6r(kg/m) > −1.96× 1022 > −3.54× 1025

ξ6Λ(kg/m) < 5.53× 1023 < 1.67× 1024

lnBi
j 0 0 −2.01+0.04

−0.03 −0.63+0.04
−0.03

TABLE 7.6: In the table, we report the constraints on the parameters
of Isotropic Ricci Cosmology with ansatz 4 and ΛCDM, both tested

against the same full and late data sets.

7.4 Discussion

An analogous Hubble function to that derived in Section 4.1 and tested against cos-
mological data here, has been previously studied in (Bégué, Stahl, and Xue, 2019;
Gao, Xue, and Zhang, 2021). In these works, the Hubble function which arises in
the framework of Quantum Field Cosmology (Weinberg, 2010), is given by Eqn.(2.4)
in (Gao, Xue, and Zhang, 2021). In this framework, the modification of the red-
shift scaling for dust and radiation by the same deviation parameter δG is due to the
redshift dependence of the gravitational constant while at the same time the cosmo-
logical constant acquires dependence on the redshift parameterised by the deviation
parameter δΛ.
Two models with these features having the same Hubble function have been stud-
ied. They differ with the relation among the two deviation parameters δG and δΛ: in
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the first one, the so-called "varying Λ"CDM model or Λ̃CDM, the deviation parame-
ter of matter and radiation is related to the deviation parameter for the cosmological
constant through the relation

δΛ '
(

Ωr + Ωm

ΩΛ

)
δG (7.4)

valid at small redshift for δΛ, δG � 1, with the consistency relation δGδΛ > 0; in the
second one, the so-called extended "varying Λ"CDM model (eΛ̃CDM), the devia-
tion parameters δG and δΛ are independent.
In our model, instead, we have that for the ansätze 1 and 2, the deviation parame-
ters δm, δr and δΛ are related through the reduced transport coefficients ξ50 and ξ60

as shown above, and for the ansätze 3 and 4, it holds δm 6= δr 6= δΛ, and the relation
given in Eqn.(7.4) does not hold so that the consistency relation is not compatible
with our physical requirements from the Second Law of Thermodynamics for the
deviation parameters, which moreover are not constrained to be much smaller than
unity.
Nevertheless, the two models Λ̃CDM and eΛ̃CDM, tested against a data set includ-
ing CMB distance prior data from Planck 2018, BAO and SNIa Pantheon sample,
result to be compatible with ΛCDM, analogously to what we have found for our
model tested against a more extended data set.
Similarly, these models can not fit the data better than ΛCDM and cannot solve the
Hubble tension, unless the local measurement of the Hubble parameter H0 by the
SH0ES team (Riess et al., 2019) is included into the data set.
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Chapter 8

Conclusion and Outlook

In this thesis, we have presented our work in the new framework of Ricci Cosmol-
ogy, emerged from the study of relativistic dynamics for an out-of-equilibrium fluid
in curved spacetime, as a modification of equilibrium pressure at the second order
in the expansion of hydrodynamic fields describing it, i.e. its 4-velocity, its energy
density and the background metric.
We have derived some models in which the pressure terms involving Ricci scalar
and Ricci tensor modify the bulk pressure of the matter components filling in the
Universe.
In all of these models, the second-order transport coefficients parametrising the de-
viation from equilibrium for the bulk pressure are taken to be constant.
The simplest model we have considered is Isotropic Ricci Cosmology, where homo-
geneity and isotropy of the spacetime is assumed and each matter component, dust,
radiation and cosmological constant, has its own bulk pressure modified by the out-
of-equilibrium pressure terms.
We have found that, as a result of the presence of such pressure terms, a departure
from the perfect fluid redshift scaling for each matter component is obtained. On de-
viation parameters describing such departures we have put physical bounds from
the Second Law of Thermodynamics and we have studied the energy conditions for
such a model, finding non trivial relations between the deceleration and the reduced
second order transport coefficients.
We have tested this model against cosmological data, finding that it is compatible
with ΛCDM, and thus does not lead to a relief of the Hubble tension at the back-
ground level and is disfavoured with respect to ΛCDM. Furthermore, observational
bounds on the transport coefficients ξ5 and ξ6 have been obtained.
Then, we have also studied two solutions in the framework of Ricci Cosmology in
which we have dropped the assumptions on which the Cosmological Principle re-
lies.
In the first case, we have considered an anisotropic but homogeneous Universe, de-
scribed by the Bianchi I Type metric. In the second case, we have studied an isotropic
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but inhomogeneous Universe, described by the Lemaître-Tolman-Bondi metric.
In both cases, we have found a Hubble function which includes a correction from
anisotropic expansion coming from the anisotropy of the cosmic background in the
first case and from the anisotropy induced by the inhomogeneity in the second case.
The Cosmological Principle was again assumed in Ricci Vacuum Cosmology in
which the Ricci pressure terms affect only the vacuum, giving rise to a model anal-
ogous to the widely investigated Running Vacuum Model. The running of the vac-
uum in our case came from the fact that the vacuum was out of equilibrium and its
energy density depended on the radiation and dust energy densities. For this model,
two cases have been taken into account: in the first one, the vacuum interacted only
with Cold Dark Matter, while in the second one, it interacted with Dark Radiation.
In both cases, a deviation for the redshift scaling of the interacting species has been
found. Another feature of this model was that dust and radiation contributed to
the energy budget of the Universe through effective dimensionless energy density
parameters.
Then, we have shown how the new pressure terms modify the scenario of Tilted
Cosmology at the level of the Energy-Momentum Tensor of the cosmic fluid as seen
by the observer and the energy conditions for the cosmic fluid.
Further steps into the exploration of the framework of Ricci Cosmology that we
leave for future investigations is testing the Anisotropic Ricci Cosmology, the In-
homogeneous Ricci Cosmology and the Ricci Vacuum Cosmology models against
cosmological data in order to study whether these models can fit the data better
than ΛCDM and possibly relieve the Hubble tension.
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Appendix A

Priors derivation of Isotropic Ricci
Cosmology parameters

The general expressions for the deviation parameters parametrising the modifica-
tion of the usual scaling with the redshift for matter components in terms of the
constant reduced second order transport coefficients for dust, radiation and cosmo-
logical constant are given by

δm =
2ξ̂5m + ξ̂6m

1 + 2ξ̂5m − ξ̂6m
, (A.1)

δr =
2ξ̂6r

1 + 2ξ̂5r − ξ̂6r
, (A.2)

and

δΛ =
8ξ̂5Λ − 2ξ̂6Λ

1 + 2ξ̂5Λ − ξ̂6Λ
, (A.3)

respectively.
Now, we specialize them to the four ansätze considered for Isotropic Ricci Cosmol-
ogy considered in Chapter 7.

A.1 Ansatz 1

For Ansatz 1, the assumptions on the reduced second order transport coefficients
are

ξ̂5Λ = ξ̂5m ≡ ξ̂50, ξ̂6Λ = ξ̂6m ≡ ξ̂60, and ξ̂5r = ξ̂6r = 0. (A.4)

As a result, the deviation parameter for radiation is zero, while the other two devi-
ation parameters have the following expressions

δr = 0, δm =
2ξ̂50 + ξ̂60

1 + 2ξ̂50 − ξ̂60
, and δΛ =

8ξ̂50 − 2ξ̂60

1 + 2ξ̂50 − ξ̂60
. (A.5)
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From the entropy growth condition for dust and cosmological constant studied in
Section 4.1, we have

δm ≤ 0 and 2ξ̂50 − ξ̂60 ≥ 0. (A.6)

By using these inequalities in the second of Eqn.(A.5), we have

2ξ̂50 + ξ̂60 ≤ 0. (A.7)

One can invert the relations for the deviation parameters δm and δΛ (A.5), obtain-
ing the following expressions for the reduced second order transport coefficients in
terms of the deviation parameters

ξ̂50 =
δm + 1

2 δΛ

2(3 + δm − δΛ)
and ξ̂60 =

2δm − 1
2 δΛ

3 + δm − δΛ
. (A.8)

By substituting the relations in Eqn.(A.8) in the inequality (A.7), one has

3δm

3 + δm − δΛ
≤ 0, (A.9)

which together with δm ≤ 0 from the Second Law of Thermodynamics, implies

δΛ < 3 + δm. (A.10)

From the second inequality in Eqn.(A.6), it holds

δΛ − δm

3 + δm − δΛ
≥ 0, (A.11)

and by using Eqn.(A.10), one further has the bound

δΛ ≥ δm. (A.12)

From inequalities (A.10) and (A.12), we have the following prior for δΛ

δm ≤ δΛ < 3 + δm. (A.13)

From the expressions in Eqn.(A.8) and the last equation we arrive for the reduced
second order transport coefficient ξ̂60 at the following bound

ξ̂60 < 0. (A.14)
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In order to derive a bound on the other reduced second order transport coefficient
ξ50, one combines the bound (A.14) with the second inequality in Eqn.(A.6) and the
inequality (A.7), finding

− |ξ̂60|
2
≤ ξ̂50 ≤

|ξ̂60|
2

(A.15)

A.2 Ansatz 2

For Ansatz 2, the assumptions on the reduced second order transport coefficients
for dust, radiation and cosmological constant are

ξ̂5Λ = ξ̂5m = ξ̂5r ≡ ξ̂50, ξ̂6Λ = ξ̂5m = ξ̂6r ≡ ξ̂60, (A.16)

with the deviation parameters given by

δm =
2ξ̂50 + ξ̂60

1 + 2ξ̂50 − ξ̂60
, (A.17)

δr =
2ξ̂60

1 + 2ξ̂50 − ξ̂60
, (A.18)

and

δΛ =
8ξ̂50 − 2ξ̂60

1 + 2ξ̂50 − ξ̂60
. (A.19)

One can easily see that the deviation parameter δΛ (A.19) can be written in terms of
the other two deviation parameters δm (A.17) and δr (A.18) as

δΛ = 4δm − 3δr. (A.20)

In this case, the physical bounds priors from the increase of entropy are given by

2ξ̂50 − ξ̂60 ≥ 0, δm ≤ 0 and δr ≤ 0. (A.21)

From the first two inequalities as for Ansatz 1, it holds one finds

2ξ̂50 + ξ̂60 ≤ 0, (A.22)

which coincides with the inequality (A.7) found above.
By inverting the expressions for the deviation parameters δm (A.17) and δr (A.18),
we have

ξ̂50 =
−δr + 2δm

4(1− δm + δr)
and ξ̂60 =

δr

2(1− δm + δr)
. (A.23)
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and the inequality (A.22) can thus be rewritten in terms of δm and δr as

δm

(1− δm + δr)
≤ 0, (A.24)

which for δm ≤ 0, gives us a lower bound for the deviation parameter δr

δr > −1 + δm. (A.25)

Furthermore, from the first inequality in Eqn.(A.21), and the lower bound (A.25),
one gets for the deviation parameter δr the following uppe bound

δr ≤ δm. (A.26)

Thus, the physical bounds on the radiation deviation parameter δr are given by

− 1 + δm < δr ≤ δm. (A.27)

For the reduced second order transport coefficients, from the first and third inequal-
ities in Eqn.(A.21), one has

ξ̂60 ≤ 0, (A.28)

which combined with the first inequality in Eqn.(A.21) and the inequality (A.22),
leads to the bound for the reduced second order transport coefficient ξ50

− |ξ̂60|
2
≤ ξ̂50 ≤

|ξ̂60|
2

. (A.29)

A.3 Ansatz 3

For Ansatz 3, the assumptions on the reduced second order transport coefficients
are

ξ̂5Λ = ξ̂6Λ, ξ̂5m = ξ̂6m, and ξ̂5r = ξ̂6r = 0. (A.30)

Thus, the deviation parameters for dust (A.1) and cosmological constant (A.3) read

δm =
3ξ̂5m

1 + ξ̂5m
and δΛ =

6ξ̂5Λ

1 + ξ̂5Λ
, (A.31)

while δr = 0.
Therefore, the physical bounds from the entropy growth are given by

δm ≤ 0, and ξ̂5Λ ≥ 0, (A.32)
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which imply the following bounds for the reduced second order transport coeffi-
cient ξ̂5m and the deviation parameter δΛ

− 1 < ξ̂5m < 0, and δΛ ≥ 0. (A.33)

A.4 Ansatz 4

For Ansatz 4, the assumptions on the reduced second order transport coefficients
are

ξ̂5Λ = ξ̂6Λ, ξ̂5m = ξ̂6m, and ξ̂5r = ξ̂6r. (A.34)

Thus, the deviation parameters (A.1), (A.2), and (A.3) read

δm =
3ξ̂5m

1 + ξ̂5m
, δΛ =

6ξ̂5Λ

1 + ξ̂5Λ
and δr =

2ξ̂5r

1 + ξ̂5r
. (A.35)

The physical bounds from the increase of entropy from the Second Law of Thermo-
dynamics are thus given by

δr ≤ 0, δm ≤ 0, and ξ̂5Λ ≥ 0. (A.36)

The last inequalities imply the following bounds for the deviation parameter δΛ and
the reduced second order transport coefficients ξ̂5r and ξ̂5m

δΛ ≥ 0, −1 < ξ̂5m < 0, and − 1 < ξ̂5r < 0, (A.37)

with the first two inequalities coinciding with the priors found for Ansatz 3.
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