Dale 4/14636 (2023) Dale 4/14/44: 28.08.2025 ## **Doctoral Dissertation - Review Report** PhD. Candidate: Dominik Bohm 28. 09. 2023 WPLYNELO Title: Nuclear fuel recycling by distillation-based separation This written report provides a detailed justification of my evaluation. It is based on the evaluation grid below. A set of comments/recommendations for <u>minor</u> revisions to the dissertation, provided for improvement and/or clarification purposes is also attached below. | Criteria for evaluation | Excellent | Very good | Good | Satisfactory | Unsatisfactory | |--|-----------|-----------|------|--------------|----------------| | 1. Makes an original contribution to knowledge | Х | | | | | | 2. Advances knowledge in the field | X | | | | | | 3. Is inline with norms of research | Х | | | | | | 4. Detail methodology and methods | Х | | | | | | 5. Reports results clearly | | Х | | | | | 6. Justify analyses and conclusions | Х | | | | | | 7. Implications are discussed | | Х | | | | | 8. Grammar, style, coherence is acceptable | | Х | | | | ## Comments - Part I Introduction second paragraph: cost-effective is preferred over cheap and probably includes it. I suggest removing "cheap" (supply energy) - Part I Introduction third paragraph: are there other indicators for usability of energy sources? Why EROI? - Part I Introduction General: Contribution is clear and relevant. - Part I Introduction Page 2, first paragraph: only one reference regarding common modern thermal separation processes, reference [48]. Any other reference to support your statement? - Part I Introduction Page 2, first paragraph spelling mistake "sepatation effort" - Part I Introduction Page 2, second paragraph please support the advantage of halogenation for distillation with references. - On page 4: what about the cost of SiC or ZrC as potential materials for corrosion purposes? - "Technical feasibility" strongly supports your contribution (on Page 5). - On page 6: clarify the purpose of adding gaseous cesium. How does it work? - On page 10: what would be the eventual advantage, if any, of using numerical optimization procedures? What would you look at? - Distillation process well-explained. - Thermodynamics/equilibrium well-justified & explained. - Part III: Please rephrase the "linkage"/intro to the work items that have been carried out in the thesis. - Page 44: "mixture LiCl-KCl are available in" ... are there any references missing? - Page 44: What consequences would you expect by not considering the interaction behaviour? - Page 49: good justification on VLE method. - Page 51: good justification on pressure swing methods. - Page 54: gewählt worden. Please translate. - Page 56: Please agree on significant digits when presenting results in table 7. Any indicator of goodness of fit beyond standard deviation? - Page 57: as explanations are purely hypothetical, how can you visualize the impact of separation as the dependence is away from ideality? - Page 65, please correct spelling "Margeules" - Page 65, ok with Margules approach. - Page 70, total reflux well justified. - Use of significant digits must be consistent in the entire text. - Comparison well described on page 79. - Page 88: solids separation indeed, should be considered as separated... - Good material selection on page 91. Well-justified. - Page 94/95: Any collateral emission/additional waste/effluent derived from the process? Any further environmental/safety aspects to be considered? Same for page 101 and beyond. Off gas... better introduction for your reader. - Interesting remark around operating pressure to separate zirconium tetrachloride. Process variables remarkably well explained, in detail. - Please check abbreviations/spelling of thermodynamic systems in your conclusions. - Good to emphasize thermodynamics as the basis for further works. - In general: please check spelling mistakes. My overall recommendation as an examiner is PASSED, which implies that this dissertation is ready to proceed to the oral defense. Toronto, September 13th 2023. Daniela Galatro, PhD, PEng Assistant Professor, Teaching Stream Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street. Room WB28 Toronto, ON, M5S 3E5 Phone: 416-978-1143 Email: daniela.galatro@utoronto.ca