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Ponizsza dysertacja zostala napisana z zamiarem zbadania wtasnosci asymptotycznych pewnej klasy
nieograniczonych Co-polgrup oraz, niezaleznie, rozszerzenia istniejacych wynikow dotyczacych réwnan

rézniczkowych z op6Znieniem typu neutralnego z przypadku C™ na przypadek nieskoriczeniewymiarowy

W pierwszej czesci dysertacji zostalo udowodnione, ze dla Co-pdlgrupy {T'(t)}i>0 o generatorze A,
przy pewnych zalozeniach, zachodzi

IT@®A _

lim =0,

tmoo f(1)
gdzie funkcja rzeczywista f(t) jest w pewnym sensie podobna do normy poétgrupy || 7(t)||. Zalozenia
dotycza zachowania asymptotycznego obcie¢ potgrupy do pewnych rzutéw Riesza stowarzyszonych z
operatorem A. Dla odpowiednio regularnych Cy-potgrup, funkcja f(¢) moze byé rowna ||T'(¢)]]. W tym
wypadku uzyskany wyniki oznacza, ze rozwiazania klasyczne odpowiedniego zagadnienia Cauchy’ego
rosng wolniej (albo zanikaja szybciej) niz norma polgrupy. Opisane wyniki poszerzaja juz istniejace,

gtéwnie poprzez dopuszczanie lokalizacji widma na osi {z € C: Re(z) = wp}.

W drugiej czesci dysertacji rozwazane jest rownanie rézniczkowe
0 0
2(t) = Azt —-1)+ / Ay (0)2(t + 0)do + / As(0)z(t +0)dé, =z(t) € H
—1 —1

gdzie H jest dowolng osrodkowa przestrzenia Hilberta a A, A5(6), A3(6) sa operatorami ograniczonymi
o pewnych szczeg6lnych wlasnosciach. Opisane wyniki poszerzaja wyniki juz istniejace ktore zachodza
dla przypadku skoriczeniewymiarowego. Tymi wynikami sa, miedzy innymi, generowanie Cy-polgrupy
poprzez operator liniowy A reprezentujacy powyzsze rownanie w przestrzeni H x L2 ([—1,0]; H) oraz

istnienie bazy Riesza skonstruowanej przy uzyciu rzutéw Riesza operatora A.
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Dissertation summary

The object of this study was the analysis of asymptotic behavior of a certain class of unbounded Cjy-
semigroups and, independently, the extension of some existing results concerning the delay differential

equations of the neutral type in C™ to the infinite-dimensional case.

In the first part of the dissertation, we prove that for the Cy-semigroup {T'(¢)};>¢ with the generator
A having some particular asymptotic properties when truncated to the images of the Riesz projections
of the operator A associated with certain subsets of the spectrum,
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lim
t—o0 f(t)
The real function f(t) in some sense approximates the norm of the semigroup ||T'(¢)| and, for regular
enough Cp-semigroups, the function f(¢) can equal | T(¢)||. This property means that the classical
solutions of the corresponding Cauchy problem grow slower (or decay faster) than the norm of the
semigroup. Our results extend some existing ones, mainly by allowing the spectrum of the generator

to be located on the the axis {z € C: Re(z) = wp}.

In the second part of the dissertation we consider the differential equation

Ht) = As(t—1) + /0 Ax(0)3(t + 0)d0 + /0 As(0)=(t + 0)d0, 2(t) € H

where H is an arbitrary separable Hilbert space and A, A2(0), A3(8) are bounded linear operators with
some particular properties. We extend the results which hold for the finite-dimensional case including
the generation of a Cp-semigroup by the linear operator A representing the above equation and the
existence of a Riesz basis of the corresponding space H x L? ([—1,0]; H) constructed from the Riesz

projections of the operator A.
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Preface

The roots of the Cy-semigroup theory can be traced to the work of G. Peano from the end of the
19th century to whom we owe the exponential formula for the solution of the finite-dimensional time-

dependent linear equation of the form

(t) = Az(t),

and his student M. Gramegna extended the exponential formula to the case of bounded operators on
infinite-dimensional spaces. While these formulas are quite simple, physical sciences of the first half of
the 20th century needed more than that, namely solutions to ordinary linear differential equations for
the case of the operator defining the differential equation being an unbounded operator. The answer
to this need required new ideas in solving newly posed problems and thus originated the Cy-semigroup
theory. The theory of Cy-semigroups is regarded as of now as the way to treat such linear ordinary
differential equations in general Banach spaces. It became a well-established branch of functional
analysis around the middle of the 20th century with the works of E. Hille, G. Lumer, R. Phillips, K.
Yosida and others, who characterized the dynamical systems in Banach spaces that can be represented
using Cy-semigroups. Classical examples of systems which can be described by the Cy-semigroup
theory are partial differential equations, integro-differential equations, delay differential equations with
quantum mechanics, population dynamics and control theory being less abstract examples. One can
pose the question whether every decent, i.e., uniquely solvable ordinary linear differential equation in
a Banach space, admits a semigroup representation. The answer is no, however the only additional
condition that needs to hold in such a case is the non-emptiness of the semigroup generator’s resolvent
set. That being said, the Cy-semigroup theory is a powerful tool used for describing the dynamics of
physical systems, which is a consequence of the fact that it finds application to linear one-parameter
dynamical systems in any, no matter how abstract, Banach space'. As of now, the theory of Cp-
semigroups is a very well developed, mature so to speak, field of knowledge. However there are still
non-trivial questions left unanswered. An intensively studied field of research in the Cj-semigroup
theory is the semigroups’ asymptotic behavior. As one of the cornerstone results in Cy-semigroup
stability one should consider the theorem given by [1] [16] [34], which provided the necessary and
sufficient spectral condition for a bounded semigroup to be strongly stable, i.e., for all of its orbits to
vanish with time. This result showed the qualitative difference in stability of finite-dimensional systems
vs infinite-dimensional ones. This result has shown that infinite-dimensional systems can be strongly

stable even if they have spectrum located on the imaginary axis, while for the finite-dimensional case,

LOne can note here that it is also a consequence of the fact that the physical world can, for some reason, be described
using Banach spaces.



in order for the system to be strongly stable, the matrix’s spectrum needs to lie in the open left half-
plane. However, whenever an infinite-dimensional system is strongly stable and the growth bound wy is
equal 0, due to the uniform boundedness principle, it cannot be uniformly stable. Due to [2], we know
that this semigroup can be semi-uniformly stable, i.e, the smooth solutions can decay uniformly up to
the multiplication by a constant. This idea is extended to the case of unbounded semigroups in [20].
In such a case, the assertion can, for regular enough semigroups, take the following form: The classical
(smooth) solutions of a given Cauchy problem in a Banach space grow slower (or decay faster), than the
norm of the semigroup. We will call such a semigroup relatively stable. Both of these results require the
intersection of the generator’s spectrum with the imaginary axis to be empty (we are considering the
case of wy = 0 for simplicity). The first of the results presented in this work generalize the mentioned
results from [2] [20]. This is achieved by showing that for a semigroup to be relatively stable, a more
general condition, which allows for the spectrum of the semigroup’s generator to be located on the
imaginary axis, is sufficient. It is done by analyzing the asymptotics of the real function ¢t — || T'(¢)R,||,
where R, denotes the resolvent operator (4 — )~ at an arbitrary point p belonging to the resolvent
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for f(t) similar in some sense (or equal to) the norm of the semigroup ||7'(¢)|| whenever the behavior of

set p(A) and A is the generator of the Cy-semigroup {T'(¢)}+>0. Here we prove that tlim
= —00

the Cp-semigroup truncated to images of Riesz projections corresponding to spectrum located on the
imaginary axis has better asymptotics than the function f(¢). We also provide examples of application
to unbounded semigroups with the generator’s spectrum located on the imaginary axis for which one
can take f(t) = ||T'(¢)||. These examples first appeared, although in a different context, in [29] and [30].

This summarizes the first part of the results given in this dissertation.

In Chapter 3, which is the remaining part of this work, we analyze the infinite-dimensional delay

systems of the form
0 0
2(t)=AZ(t—1)+ / A2(0)2(t + 0)do + / A3(0)z(t+ 6)do, =(t) € H, (1)

where H is a separable Hilbert space and A, A3(60), A3(0), 6 € [—1,0], are bounded linear operators
with some particular properties. The study of delay systems, for the finite-dimensional case, can be
traced back to the works of such mathematicians as R. Bellman, N. Krasovskii, A. Myshkis from the
middle of the 20th century. Since for such systems the initial condition is a function (on [—1,0] in the
case of (1)), i.e, an infinite-dimensional object, it is only natural to try to model a delay system using
the semigroup theory within the framework of infinite-dimensional Banach spaces. For the system (1)
this can be done for both the finite [25] and infinite-dimensional cases. We prove the latter in this work

using, similarly as in [25], the following representation of (1) in appropriate product Hilbert spaces:

4 (y(t)) _ A<y<t>>’ ,4< y ) _ (f1A2<9)73(9)d9+f1A3(9)z(9)d9>7 )
(") (") z() dz(6)/d¢

where z;(-) = z(t + +). The domain of the operator A is given by

D(A) ={(y,2(-)) : z € H' ([-1,0; H) ,y = 2(0) — Az(~1)} € H x L*([-1,0;; H)



where H'! denotes the Sobolev space of order 1. This type of representation for delay system was
introduced by Burns et al. in [7]. Further in this chapter we focus on the the existence of a Riesz
basis of subspaces which are invariant under the action of operator A. It is a concept related to
asymptotic stability of a given linear differential system. The Riesz basis property for the system
(2) in the finite-dimensional case was obtained in [25] and was a key tool in analyzing the stability
of the system (2) for the finite-dimensional case in [22-25]. The Riesz basis property occurs in a
more general setting as was later proved in [37] [39]. Our results concerning the existence of such a
Riesz basis of A-invariant subspaces extend the results from [25] and are also somewhat similar to
ones presented [37] [39], however the invariant subspaces that appear in this work are, in contrast
to [25] [37] [39], infinite-dimensional. We prove the existence of a Riesz basis of infinite-dimensional
A-invariant subspaces for the system (2) for the case of A 3(-) = 0 and a weaker yet similar result for
the operator-valued functions As 3(-) of a certain class which generalizes the matrix-valued functions
used in the case of H = C™ in [25]. These results are applicable, among other, to integro-differential

equations in the L?[0,1] space of the form

0,1 0 pl
Z(s,1) :Aé(&t—l)—i—/l/o k:g(s,u,@)é(u,t—i—ﬁ)dude—i—/l/O ks(s,u,0)z(u,t + 6)dudd,

under the condition

1ol
/ / |ka.3(s,u,0)])* duds < oo
o Jo

0 1 1
/ / ka.3(s,u, 0)|” dudsdd < co.
—1J0 0

for all 6 € [-1,0], and
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Chapter 1

Functional analytic tools

1.1 Elements of spectral and Cjy-semigroup theory

In this section we recall some properties and definitions concerning Cy-semigroups and the spectrum
and resolvent operator of linear operators acting from a Banach space X onto itself. The facts and
definitions in this section are presented as in [10], unless noted. They can be found in many other
general works on Cp-semigroup theory, such as [19] or [38]. First, for A being a closed linear operator
on X with D(A) denoting the domain of A we denote the resolvent set of A by p(A) and its spectrum
by o(A). Elements of the spectrum of the operator A can be classified in many different manners,
here we will use the simplest characterization which splits the spectrum into the approzimate point

spectrum, which contains the point spectrum, and the residual spectrum.
Definition 1. For a closed operator A: D(A) C X — X, we call
Po(A) :=={X e C:A— X is not injective }
the point spectrum of A. Moreover, each A € Po(A) is called an eigenvalue, and each 0 # x € D(A)
satisfying (A — Nz = 0 is an eigenvector of A (corresponding to \).
In the following definitions by rg(A) we mean the range of the operator A.

Definition 2. For a closed operator A: D(A) C X — X, we call

A€ C: A— X is not injective or
Ac(A) =
A€ C:rg(A— ) is not closed in X

the approximate point spectrum of A.

It is clear from the definition, that the point spectrum Po(A) is a subset of Ac(A). The approximate

point spectrum is characterized by the following property.

Lemma 3. For a closed operator A : D(A) C X — X and a number A € C one has A € Ac(A),

10



i.e., \ is an approximate eigenvalue, if and only if there exists a sequence {xn}neny C D(A) called an

approximate eigenvector, such that |z,|| =1 and lim ||Ax, — A\z,| = 0.
n—oo
The boundary of the spectrum belongs to the approximate point spectrum, i.e., the following holds

Lemma 4. For a closed operator A : D(A) C X — X, the topological boundary 0o (A) of the spectrum

o(A) is contained in the approzimate point spectrum Ac(A).

The next definition followed by the Proposition 6 are useful when applying Theorem 10, which allows

to determine some desirable asymptotic properties for semigroups of operators.

Definition 5. For a closed operator A : D(A) C X — X we call
Ro(A):={X € C:rg(A— ) is not dense in X}

the residual spectrum of A.
Proposition 6. For a closed, densely defined operator A, the residual spectrum Ro(A) coincides with
the point spectrum Po(A*) of A*, where A* is the adjoint operator of the operator A.

1.1.1 Asymptotics of C)-semigroups

There are several different notions of stability of Cy-semigroups, the most important ones are listed
below. Before we proceed however, we will recall for clarity the definition of the growth bound of a

semigroup 7', denoted by wo (7).

Definition 7. Let T = {T(t)}+>0 be a Co-semigroup. The growth bound wo(T') of T is defined as

wo(T) := inf{w € R : there exists M, > 1 such that ||T(¢)| < M,e**, for all t > 0}

We will usually denote wo(T') shortly by wg. This number is always less than oo, which follows from the
observation that, due to the uniform boundness principle, ||T'(¢)| is uniformly bounded on all compact

intervals. It can however equal —oco in some cases (so-called nilpotent Cyp-semigroups).
Definition 8. Cy-semigroup {T'(t)}i>0 is called

(a) uniformly exponentially stable if there exists € > 0 such that

lim e | T(¢)|| = 0,

t—o0

(b) uniformly stable if
lim ||T(t)[| = 0,

t—o0

(c¢) strongly stable if
tl_i)m IT(t)x|]| =0, forallxe X,

11



(d) weakly stable if
lim (T'(t)z,z*) =0, forallze X and z* € X*,

t—o00

where X* denotes the dual space to the space X.

Note that a Cy-semigroup is uniformly exponentially stable (case (a)) if and only if wq is less than 0.

The following proposition characterizes in more detail the concept of uniform exponential stability.
Proposition 9. For a Cy-semigroup {T'(t)}+>0 the following assertions are equivalent.

(a) wo <0, i.e., {T(t)} >0 is uniformly exponentially stable.

(b) lim [T(1)] = 0.

(c) |IT(to)]] <1 for some ty > 0.
Now we will state a crucial theorem concerning strong stability of bounded Cy-semigroups.

Theorem 10. ( [1] [16] [34] ). Let A be the generator of a bounded Cy-semigroup {T(t)}1>0 on a
Banach space X and let
o(A)N (IR)  be at most countable,

then the Cy-semigroup {T'(t)}:i>0 is strongly asymptotically stable if and only if the operator A* has

no purely imaginary eigenvalues.

1.1.2 Connection between Cj-semigroups and linear differential equations

in Banach spaces

In this subsection we will show the connection between Cy-semigroups of operators and linear differen-
tial equations in Banach spaces. The abstract Cauchy problem (ACP) in a Banach space X, together

with its classical solution, is defined as follows:

Definition 11. (a) The initial value problem
#(t) = Ax(t), fort>0,

(ACP)
x(0) = o,

is called the abstract Cauchy problem associated to (A, D(A)) and the initial value .

(b) A function z(t) : t € Ry — X is called a (classical) solution of (ACP) if x(t) is continuously
differentiable with respect to t, x(t) € D(A) for allt > 0, and (ACP) holds.

Now, assume that (4, D(A)) is a generator of a Cy-semigroup {7T'(¢)};>0. Then the following holds:

Proposition 12. Let (A,(D(A)) be the generator of the Co-semigroup {T'(t)}i>0. Then, for every
x € D(A), the function
x:t—x(t) =Tz

is the unique classical solution of (ACP).

12



In many cases a more general concept of solution is of use, namely the mild solution, defined as:

Definition 13. A continuous function z(-) : R§ — X is called a mild solution of (ACP) if
fg z(s)ds € D(A) for allt >0 and

z(t) = A/o x(s)ds + xg.

Any classical solution of (ACP) of the form T'(t)z is also a mild solution. Next theorem will state the

converse, in some sense, of Proposition 12.

Theorem 14. Let A : D(A) C X — X be a closed operator. For the associated abstract Cauchy

problem (ACP) we consider the following existence and uniqueness condition:
For every xg € D(A), there exists a unique solution z(-,x¢) of (ACP) (EU)

Then the following properties are equivalent.
(a) A generates a Cy-semigroup.
(b) A satisfies (EU) and p(A) # 0.

(c) A satisfies (EU), and there exist a sequence A, — oo such that the ranges (A, — A)D(A) equal
X for allm € N.

(d) A satisfies (EU), has dense domain, and for every sequence {Ty tnen C D(A) satisfying lim x,, —
n— oo

0, one has lim z(t,z,) = 0 uniformly in compact intervals [0, to).
n— oo

Thus the existence of a unique solution of (ACP) combined with the non-emptiness of the resolvent

set of the generator A are equivalent to the generation of a Cp-semigroup by the operator A.

We will now formulate the remarkable Hille-Yosida Theorem. This theorem shows the direct relation-
ship between the exponential bound of the growth of the norm of the Cy-semigroup, localization of
the set p(A), and behavior of the norm of the resolvent on certain subsets of p(A), where A is the

generator of the Cy-semigroup.

Theorem 15. (Hille-Yosida Theorem) Let (A, D(A)) be a linear operator on a Banach space X and
let w e R, M > 1 be constants. Then the following properties are equivalent,

(a) (A,D(A)) generates a Cy-semigroup {T'(t)}1>0 satisfying

IT@#)|| < Me**  fort>0.

(b) (A,D(A)) is closed, densely defined, and for every A > w one has X € p(A) and

[[A=w)R\, A)]"|| <M for all neN.

13



(c) (A,D(A)) is closed, densely defined, and for every A € C with ReX > w one has X € p(A) and

M

for allm € N.

1.2 Riesz projections and Riesz bases of subspaces

Here we give some facts concerning the Riesz projections (spectral projections) and Riesz bases of
subspaces (bases equivalent to an orthogonal base). The definitions and results in this section are
presented as in [12]. The Riesz projections associate an operator with a contour integral of the
resolvent in the complex plane, while the Riesz basis of subspaces is a family of subspaces in some

sense close to an orthogonal basis of subspaces and only makes sense if we work in a Hilbert space.

Let X be a Banach space. The Riesz projection of the operator A corresponding to a curve I' which

is a subset of the resolvent set p(A), denoted here by Pr, is defined as follows:

Definition 16. (Riesz Projection (Spectral Projection)) Let T' be a rectifiable simple or composite
contour enclosing some region Gr and lying entirely in the resolvent set p(A) of the operator A € L(X).
Then R(A,\) = (A — X))~ will be an analytic operator-valued function on T'. Assume that the curve

I’ has positive orientation relative to the region Gr, we then form the integral

1
Pr=—— A, N)dA
r 27TZ FR( ' ) ’

then the following propositions take place

e The operator Pr is a projection operator commuting with the operator A and hence in the de-
composition
X =Yr ® Zr, where Yr = PrX and Zr = (I — P[*)X

both subspaces Yr and Zr are invariant subspaces of the operator A. What is more,

(a) The spectrum of the restriction of the operator A to the subspace Yr is the part of the

spectrum of the operator A contained in the region Gr

(b) The spectrum of the restriction of the operator A to the subspace Zr is the part of the

spectrum of the operator A lying outside the closure of the region Gr,

o IfT'1 and I's are two different contours having the properties indicated above and the regions Gr,
and Gr, do not have common points, then the corresponding projectors are orthogonal to each
other, i.e.,

Pr,Pr, = Pr,Pr, =0.

Although the authors of [12] formulate Definition 16 for Hilbert spaces, they state in the introduction
that “The first chapter recalls the well-known results general theory of bounded non-self-adjoint oper-
ators. Generally, these results are not specific to Hilbert space -they could be formulated for operators

in a Banach space”. We have decided to include the above definition of the Riesz projection due to

14



its clarity. In chapter IV of [10] the authors provide a definition of the Riesz projection (spectral
projection) which does not assume the space X to be a Hilbert space, only a Banach space, and also

drop the requirement “A € £(X)” and require instead the operator A to be a closed linear operator.

The remaining part of this section is devoted to the concept of Riesz basis of subspaces (basis of
subspaces equivalent to an orthogonal basis) in a Hilbert space, from now on denoted by H. We begin
with the definition of a basis of subspaces of the space H followed by the definition of a Riesz basis of

subspaces of the space H.

Definition 17. A sequence {#}72, of nonzero subspaces My, C H is called a basis of subspaces of

the space H, if any vector x € H decomposes uniquely in a series of the form

)
T = § Tk,
k=1

where xj, € My,.

Definition 18. A basis of subspaces for which the subspaces are mutually orthogonal is called an

orthogonal basis of subspaces.

Definition 19. (Riesz basis of subspaces) Every bounded invertible operator A : H — H transforms
any orthogonal basis of subspaces {My,}7° | of the space H to some other basis {f}7>, of the space H.
A basis of subspaces {1,152, obtained from an orthogonal basis with the use of such a transformation

will be called a Riesz basis of subspaces.

Now we state a necessary and sufficient condition for a sequence of subspaces to be a Riesz basis of

subspaces.

Theorem 20. [11] In order for a sequence {My}32 |, which is a basis of subspaces of the space H,
to be a Riesz basis of subspaces, it is necessary and sufficient that any permutation of its elements

remains a basis of subspaces of the space H.

Note that Theorem 20 implies that a Riesz basis of subspaces will remain one if we change the original
norm || -||; to an equivalent one || - ||2. This can be seen by writing for any permutation o (k) of the

indices k,
clz = zomllz < llz =Y zoumll < Cllz =Y o2,
k=1 k=1 k=1

where ¢,C' > 0, x € H is arbitrary and x,(;) denote the elements of the representation of the element

x with respect to the permuted basis in the space H endowed with the norm || - ||;.

The following definitions are necessary to formulate Theorem 24, which gives a sufficient (and only

sufficient) condition for a family of subspaces {ff;}7° | to be a Riesz basis of subspaces.

Definition 21. A sequence of subspaces {f;}3°, of the space H is said to be complete if the closed

linear span of these subspaces is equal to the whole space H.

Definition 22. A sequence {M,}72, of nonzero subspaces will be called w—linearly independent if
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the equality
Zxk =0, (:L‘k Emk;kzl,Q,...)
k=1

cannot hold for

oo
0<> Jax? < 0.
k=1

Definition 23. Two sequences of subspaces {My}52, and {N;}72, are said to be quadratically close
if

oo

D llQk = Pefl* < o,

k=1

where Qy and Py are the orthogonal projections onto the subspaces My, and £y respectively.

Now we are ready to provide a sufficient condition for a sequence of subspaces to constitute a Riesz
basis. The Theorem is formulated for finite-dimensional subspaces and is extended to the infinite-

dimensional case through Remark 26.

Theorem 24. [17] A complete w—linearly independent sequence {My}32, of finite-dimensional sub-
spaces which is quadratically close to some Riesz basis of subspaces {fx}3°, of the space H basis is

also a Riesz basis of subspaces.

In order to formulate the extension to the infinite-dimensional case we will need the following definition

of the minimal angle between subspaces.

Definition 25. The minimal angle between the subspaces @ and ¥ is the angle p(@,¥) (0 < ¢ < T),
defined by the equality

cos (@, V) = sup [(z,y)]
€@ yeV, ||z =|lyl=1

The following remark extends Theorem 24 to the case of infinite-dimensional subspaces.

Remark 26. In Theorem 24 we can discard condition of finite-dimensionality of subspaces (the proof
remains the same) if we replace the condition of the w—Ilinear independence of the sequence {My}7° |
by the stronger condition: for any k the minimal angle between the subspace My and the closed linear

span of the rest of subspaces M; (j # k) is positive.

1.3 Bochner integral and Bochner spaces

The integrals that appear in this work are Bochner integrals. The Bochner integral is a generalization
of the Lebesgue integral to the integral of functions taking value in Banach spaces. The facts and
definitions in this section are presented as in [14], unless noted. Below we give some facts concerning
the construction of the Bochner integral and its basic properties. We assume that a measure space

(S, F,u) is given. By X we denote an arbitrary Banach space.
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N
Definition 27. A p-simple function with values in X is a function of the form f = Z XA, Tn, where

xn € X and the sets A, € F satisfy pu(A4,) < co and xa, denotes the chamctemstzc functwn of the
set A,.

Definition 28. A function f: S — X is strongly pu-measurable if there exists a sequence {fn}2, of

w-simple functions converging to f u-almost everywhere.

N
Definition 29. For a p-simple function f = > xa, x, we define
n=1

N
/ fdu:="Y u(A
S n=1

Now we are ready to state the definition of the Bochner integral.

Definition 30. (Bochner Integral) A strongly p-measurable function f : S — X is Bochner integrable

w.r.t the measure p if there exists a sequence of p-simple functions f, : S — X such that
i [ 17~ fuldp =
n—oo S

Note that s — || f(s) — fu(s)|| is p-measurable, so that this definition makes sense. From

H/sf"d“_/sfmdﬂH S/S”fn—fmﬂdu

< /S 1 — Flldpe+ /S 1 — Flldu

we see that the integrals fS fndp form a Cauchy sequence. By completeness, this sequence converges

to an element of X. This limit is called the Bochner integral of f with respect to u, notation

/fdu = lim /fndu.
S n—oo S

The following basic properties of the Bochner integral will be of use in Chapter 3. Note that

Theorem 32 is a generalization of the Dominated Convergence Theorem for the Lebesgue integral.

Proposition 31. A strongly p-measurable function f : S — X is Bochner integrable with respect to
if and only if
[ flldn < .
S

H/SfduH S/SHflldu.

Theorem 32. (Dominated Convergence Theorem) Let the functions f,, : S — X be Bochner integrable.

and in this case we have

If there exists a function f : S — X and a non-negative integrable function g : S — R such that

lim f,, = f almost everywhere and ||f,| < g almost everywhere, then f is Bochner integrable and we
n—oo
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have

lim / | fr. — flldp = 0.
n— o0 S

In particular,

lim. mmti/fw

The Bochner integral allows to consider a generalization of the Banach LP(S,C) spaces of Lebesgue

p-integrable functions. These Banach spaces are called Bochner spaces and are defined as follows.

Definition 33. (Bochner space) For 1 < p < oo we define LP(S; X) as the linear space of all (equiv-

alence classes of ) strongly p-measurable functions f : S — X for which

/Hm%u<m.
S

We define L>°(S; X) as the linear space of all (equivalence classes of ) strongly p-measurable functions

f:S — X for which there exists a real number r > 0 such that p{s: ||f(s)|| > r} =0.

Ifllzr(six) = (/S IIfIPdu> '

[fllzoe (six) := inf {r > 0 p{[| ]| > r} = 0},

FEndowed with the norms

and

the spaces LP(S;X),1 < p < oo, are Banach spaces.

Now we will state the natural definition of strongly p-measurable operator-valued functions which
allows to consider Bochner integrals of functions which take values in £(X,Y"), where Y denotes an

arbitrary Banach space.

Definition 34. A function f : S — L(X,Y) is called strongly p-measurable if for all x € X the

Y -valued function fx: s — f(s)x is strongly u-measurable.
For the strongly p-measurable operator-valued functions the following holds

Proposition 35. Let (S, F,u) be a measure space and let X and Y be Banach spaces. If f: S — X
and g: S — L(X,Y) are strongly p-measurable, then gf : S —'Y is strongly pu-measurable.

Below provide a result concerning the integration by parts of Bochner integrals.

Theorem 36. [9] If f() :[a,b] = X and T(:) : [a,b] = L(X) are Bochner integrable on [a,b], then

[70 ([ as)ar=— [ ([ o) s+ ( /abmdt) ( Lbf<s>ds> |
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1.4 Hilbert-Schmidt operators

Here we define the Hilbert-Schmidt operators, a class of bounded operators with some very useful
properties, including the fact that they form a Hilbert space for some appropriate scalar product. The
facts presented here come from [35] and should be found in any basic textbook concerning the Hilbert

space operator theory. First, we need the definition of the trace of a positive bounded operator.

Definition 37. Let H be a Hilbert space with the orthonormal basis {e,}en. Let A be a positive
bounded operator, we define the trace of A, denoted by Tr(A), as

Tr(A) = Z(Aei,ei) € [0, 4+o0]
iEN

Next proposition shows than the trace of an operator does not depend on the choice of the orthonormal
basis.

Proposition 38. Let {e}};cn’ be a different orthonormal basis of H and let A be a positive operator.
Define

Tr'(A) = Z (Aél, e,
iEN'
then Tr'(A) = Tr(A).
Now we are ready to define the space of Hilbert-Schmidt operators L s(H).

Definition 39. (Hilbert-Schmidt Operator) Let A € L(H). We call A a Hilbert-Schmidt operator,
whenever
Tr(A*A) < oo,

and denote the space of Hilbert-Schmidt operators as Lys(H).

For operators in Lygs(H) the trace operation can be extended to a scalar product and the space

Lys(H) forms a Hilbert space, as is stated in the following Theorem.

Theorem 40. Lys(H) is a Hilbert space with the scalar product given by

(A,B)gyoam = Tr(B*A) = (Ae;, Be;). A,B € Lus(H).
i€EN

The norm given by this scalar product
1
[Allzusny = (Tx(AA))> . A€ Lys(H)

1s called the Hilbert-Schmidt norm.

It can be seen from the definition of the trace of a positive operator that, for the space H being
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separable and for A € Lyg(H), it holds that

JAIZ, oo = Tr(ATA) = S el = 3 [(Aenen) = 3 Jay P (L1)

ieN i,jEN i,jEN

where a;; are the elements of the infinite matrix representing the operator A in an arbitrary orthonormal

basis. Note that it follows from (1.1) that

Remark 41. The space of Hilbert-Schmidt operators on a Hilbert space H is separable whenever H is

separable.

Also note that, as can be seen from (1.1), the Hilbert-Schmidt operators form an extension of matrix
operators used for the case when H = C”. The Hilbert-Schmidt norm, whenever defined, dominates

the standard operator norm, i.e.,

Proposition 42. For any Hilbert-Schmidt operator A it holds that
ANl < 1Al 2ps ),

where || - |2z denotes the standard operator norm.

1.4.1 Hilbert-Schmidt operators on L?([a,b],C)

Here we introduce a class of integral operators acting on the space L?([a,b],C) which are Hilbert-
Schmidt operators. Let f(-) € L%([a,b], C).

Proposition 43. The operator A defined by

b
mnmwa/MMV@m

s a Hilbert-Schmidt operator whenever

b b
//|k(s,t)|2dsdt<oo,

with the Hilbert-Schmidt norm given by

b b
Hmaﬂmw://u@mnm.

1.5 Auxiliary tools

We will now state the definition of the Sobolev space of order one. In this dissertation we will not
need the definition of higher-order Sobolev spaces, although the first equality in the definition below

can be naturally extended to functions differentiable more than once.

Definition 44. [3] Let X be a Banach space, fix a real number 1 < p < oo, and let I = [a,b] C R be
a compact interval. The Sobolev Space W1P(I, X) can be defined as the completion of the spaces of
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weakly differentiable functions f(-) : I — X with respect to the norm

b P
F Ol = (/ £ + ||f’(t)|pdt>

Alternatively, WP (I, X) is the space of all functions f(-) : I — X that can be expressed as the integrals

of LP functions, i.e.

f(): I — X| there exists a strongly measurable function
WhP(I,X) =< g(): I%Xsuchthatf llg(®)]|P dt < oo
and f(t) fg )ds for all t € I.

The Sobolev space WHP(I, X) is a Banach space. Note the case of p = 2 and the space X being a
Hilbert space, the space WY2(I, X) is a Hilbert space and is denoted by H'(I, X).

The following is a classical result concerning invertibility of operators sufficiently close to invertible

operators.

Theorem 45. [15] If a linear operation A € L(X) on a Banach space X has an inverse A=' € L(X),

and the norm of the operation AA satisfies the inequality HAAHL(X) < HA’ then the operation

-1
||L(X)’
Axr = A+ AA has an inverse Agl and the following inequality holds

1 B ||A71||£(X>
LX) ™ 1= ||A—1||[;(X) ||AA||£(X).

|Ax! — A-

Below we present, probably the most elementary functional calculus for bounded operators, which is

due to the work of N. Dunford.

Definition 46. [38] Consider a bounded linear operator A € L(X) where X is a complex Banach

space. We define a function f(A) of the operator A by a formula similar to the Cauchy integral formula:

2m/f

for C C p(A), where R(A,\) denotes the operator (A — \)~!

Theorem 47. [38] Let f(\) belong to the family F(A) of all complez-valued functions which are
holomorphic in some neighborhood of the spectrum o(A) of the operator A, and let an open set U D o(A)
of the complex plane be contained in the domain of holomorphy of f(\), and suppose further that the
boundary OU of U consists of a finite number of rectifiable Jordan curves, oriented in positive sense.

Then the bounded linear operator f(A) will be defined by

f(A) = —— [ RN

27i

and the integral on the right may be called a Dunford’s integral. By Cauchy’s integral theorem, the
value f(A) depends only on the function f and the operator A, but not on the choice of the domain U.

Then the following operational calculus holds:
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If f and g are in F(A), and a and 8 are complex numbers, then
e af + B9 € F(A) and af(A) + Bg(A) = (af + Bg)(A),
o fgis in F(A) and f(A)g(A) = (fg)(A).
e if  has the Taylor expansion f(\) = iojoan)\" convergent in a neighborhood U of o(A), then

(o]
flA) = > a, A™ (in the operator norm topology),
n=0

o let fr, € F(A) (n=1,2,...) be holomorphic in a fized neighborhood U of o(A). If fn(\) converges
to f(\) uniformly on U, then f,(A) converges to f(A) in the operator norm topology,

o if f € F(A), then f € F(A*) and f(A*) = f(A)*.
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Chapter 2

On the relative decay of unbounded
Co-semigroups on the domain of the

generator

The results presented in this chapter have been accepted for publication in the Journal of Mathematical

Physics, Analysis, Geometry [33].

2.1 Introduction

The asymptotic behavior of Cy-semigroups and their orbits has been a subject of an intense study
for the last few decades, see e.g. [3] [5] [6] [13] [36]. Due to the Theorem 10, the spectrum of the
generator of a bounded Cy-semigroup T = {T(¢)};>0 being located in the open left-half plane yields
the semigroup T strongly stable. Due the uniform boundedness principle this stability cannot be
uniform whenever wo(7T) = 0. Indeed, assume the contrary, i.e., there exist a positive function g(t)
such that

g(t) = 0 as t = oo, and

IT(t)l < g@lial, t20, z e X.

Now, assuming that g(t) # 0 for all ¢ > 0 we can restate the above as

1T (t)z]]

<|lzl|, t>0, z€X.
9(t)

T(t)x
g(t)

Which means that the set of vectors { } . is bounded for all z and thus, by applying the uniform
t

T(t)

boundedness principle, we get that the set of non-negative numbers {H 50 ‘} is also bounded, i.e.,
t>0

|T(t)]] < Mg(t) for some M > 0, thus | T'(t)|| < 1 for ¢ large enough. This implies, due to Proposition

9, that wo(T) < 0, which is a contradiction. However, even though we do not have uniform stability

in this case, due to [2] [4] there is the following theorem.
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Theorem 48. Let T = {T'(t) }+>0 be a bounded Cy-semigroup acting on a Banach space X and let A
be its generator. Then | T(t)A71|| — 0 as t — oo if and only if the intersection of the spectrum of the
generator A with the imaginary axis o(A) N (iR) is empty.

The above means that for a bounded Cy-semigroup 7" for which
o(A) C {z € C:Re(z) < 0}, (2.1)

the orbits starting in the domain of the generator are dominated uniformly up to the multiplication by
a constant by a decaying function f(t) = || T(t)A7Y|, i.e. |T(t)z| < f(t)C, for all z € D(A), where
C, = ||Az||. This can be easily seen be writing ||T(t)z| = ||T(t)A~tAz||. With this being the case,
we call the Cy-semigroup semi-uniformly stable [1]. Moreover, the semi-uniform stability may occur
even for unbounded Cy-semigroups (see [32] for example). For the case of unbounded Cy-semigroups
it was shown in [27] that the condition (2.1) remains necessary for | T(t)A~!|| — 0. We note here that
the sufficiency part of Theorem 48 for Cy-semigroups of contractions has been proved independently
in [21]. The results obtained in [21] were later extended in [20] to obtain Theorem 49, which generalizes
the sufficiency part of Theorem 48. Before we proceed to this results, we need to recall some necessary

definitions.
LL(R{) is the Banach algebra of functions for which
o0
Il = | 1FOlatd < o

and the weight «(t) is nonquasianalytic when

] t
/ Oga<)dt<oo
0

14 ¢2

M = 0 (it has zero exponential type,

For a nonquasianalytic weight a(t) the limit w(a) = tlim
—00

cf. [20]). The reduced weight function a4 (t) = limsup ‘XS(JSF)S ) inherits this property (again cf. [20])
§—00

A function f € LL(R{) is of spectral synthesis w.r.t. a closed subset I' of R whenever there exists a
sequence f, € LL(RJ) such that the Fourier transform of each f,, vanishes on an open neighborhood

Uy, of T for each n, and || f,, — f]| 1 Ry — 0asn— o0 (see [20] for a more detailed characterization).
Now we are ready to state the result from [20] which generalizes the sufficiency part of Theorem 48:

Theorem 49. [20] Let T = {T'(t)}+>0 be a Cy-semigroup dominated by a weight function a(t) such
that the corresponding reduced weight 1 (t) is nonquasianalytic. Assume that f is a function in L}!(R(T)
which is of spectral synthesis in the algebra LY, (RJ) with respect to the set o(A) N (iR). Then

lim —— HT(t) /O " fs)T(s)ds|| = 0.

t—o0 a(t)

The above theorem implies the subsequent corollary:
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Corollary 50. [20] Let T = {T'(t) }+>0 be a Cy-semigroup dominated by a weight function a(t) such
that the corresponding reduced weight oy (t) is nonquasianalytic. Assume that the intersection of the

spectrum of the generator A with the imaginary azis o(A) N (iR) is empty. Then

. 1 >~
tlirglo% HT(t)/O f(s)T(s)ds|| =0
for each f in LL(RY). In particular,
: 1 -1y —
Jim S T(@A = 0. (2.2)

If T' = ), then any function in L} (R{) is of spectral synthesis with respect to the set I'. With the
above in mind, it easy to see that by choosing f(t) = e~* with A > 0 large enough one can obtain
(2.2). The use of this result relies however on o(A) N (iR) = () Here we obtain an analogous result to
Corollary 50, however allowing for the spectrum of the generator to be located on the imaginary axis.

Moreover we prove that for sufficiently regular Cy-semigroups the following holds

EAGLA

Tl =0, foruep(A), (2.3)

where by R, we mean the resolvent of the Cy-semigroup’s generator A at the point pu € p(A). For
bounded Cy-semigroups (with wy(T") = 0) the assertion (2.3) reduces to the sufficiency part of Theorem

48. Example 51 shows that the generalized condition
(wo(T) +iR)No(A) =10 (2.4)

is not necessary for (2.3) to hold for unbounded Cy-semigroups, although it is sufficient for a class of

regular enough Cy-semigroups.

The papers [37] [39] provide an important tool for verification of (2.3) in Hilbert spaces whenever the
spectrum of the generator A is discrete, and the eigenvalues are uniformly separated, (i.e., inf{|\y —
Aml|: k,m € Ny k # m} > 0), and the span of the corresponding eigenvectors is dense. For this being
the case the eigenvectors will constitute a Riesz basis and the problem can be often reduced to solving
it in the invariant subspaces. This approach clearly cannot be used for general Banach spaces. In this
chapter we provide means for the verification of (2.3) for arbitrary Banach spaces. In the Section 2.3
we give an example of a family of unbounded Cy-semigroups for which (2.3) holds. For this family of
semigroups it holds that o(A) C (iR), o(A) is countable, consists of simple eigenvalues only, however

the eigenvectors do not constitute a Riesz basis

2.2 Main result

First we provide an example which shows that the condition (2.4) is not necessary for the property
(2.3) to hold. For this example of an unbounded Cy-semigroup it holds that wg = 0 and that (2.3)
holds, albeit o(A) N (iR) # (.
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Example 51. Consider a separable Hilbert space H with the orthonormal basis {e, }nen and put
T(t)eo = e'teg, T(t)ear_1 = e(ikfi)tegk_l, T(t)ear = e(ikfi)t(tezk_l + ean),

for k=1,2,... The above defines a Co-semigroup T = {T(t)}1>0 on H. It is easy to see that on the
mvariant subspace

H, = span{eqg},

the operators T'(t) and T(t)R,, are uniformly bounded for t > 0. It is less obvious that on the comple-
mentary subspace

Hy = span{ey, e, ...},

the norm of the Cy-semigroup behaves as follows:
ca <|T@H) <Ct, t>to, (2.5)

for some ¢, C,ty > 0. Further in this chapter, if two functions f(t) and g(t) meet the relation cf(t) <
g(t) < Cf(t), t>tog, it will by denoted by

f(t) ~g(t).

In particular (2.5) implies that wy = 0. Also, direct computations (or applying the results from [32])
show that
IT()R, | < M, 130,

This means that (2.3) holds despite

(i} C o(A) N (iR) # 0.

Now we present the main result of this chapter which provides a sufficient condition for (2.3) to hold.

This result, in contrast to Theorem 50, allows for the breaking of the condition (2.4).

Theorem 52. Let T = {T'(t)}1>0 be a Cy-semigroup on a Banach space X, with the growth bound

wo > —oc and the generator A. Suppose f(-) : Ry — RT is a positive function such that

i S = 20 20
[T < f(t), t=0. (2.7)

Assume further that

(a) for any A € o(A) N (wo +iR) there exists a regular bounded curve Ty C C enclosing A\, such that
I'yn O'(A) = (Z);
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(b) for any X € o(A) N (wo + iR)
TR,

ST ’ (28)
where Pr, is the Riesz projection associated with the curve I'y and the operator A.
Then
TR
tim ILOR (2.9)
t—00 f(t)

for any fived p € p(A) (recall that R,, denotes the operator R(A,p) = (A —p)~t).
Before giving the proof of Theorem 52 we want to state the following remarks:

(a) the idea of using the quotient space defined by the appropriate seminorm was first used in [34]

and has been further developed in other papers such as [5] [16] [20] [21] [31];

(b) The work [27] provides a constructive proof of existence of such a function f satisfying (2.6) and
(2.7) for an arbitrary Cp-semigroup. The function given in [27] is monotonic and it holds that

f(tn) = |T(tn)| for some unbounded sequence t,, € RJ;

(¢) we prove Theorem 52 for the case of wg = 0. For an arbitrary wy one can consider the shifted

Co-semigroup {e™“*"T(t)}+>0;
(d) the relation between (2.9) and (2.3) is shown after the proof.

In the proof we will use the construction of the special operator-valued Cyp-semigroup introduced in [27].

We note here, that a similar idea has already been used in [20] [21]. Let X C £(X) be defined as

X ={DR,: De LX)}, nepA),

where Q) denotes the closure of the linear hull @ (with respect to the operator norm). Since X is a
closed subspace of the Banach space £(X), it also is a Banach space. It is clear that X does not
depend on the choice of . For the given Cyp-semigroup {T'(¢)};>0 on the space X, let us introduce a

semigroup of operators on the space X by:
T(t)B=BT(t), BeX, t>0. (2.10)

Important properties of this semigroup were shown in [27], namely that {f(t)}tzo forms a

Co-semigroup on X , and that

1. for A and A being the generators of {T'(t)}4>0 and {T'(t)}¢>0, respectively, it holds that

o(A) C o(A); (2.11)
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2. for B € X and p € p(A), it holds that

(A—p) 'B=B(A—-p) " (2.12)

We will also use the following lemma:

Lemma 53. [16] Let T = {T(t)}+>0 be a Cy-semigroup of isometries on a Banach space X and

denote its generator by A. Then one of the following two cases holds
(a) o(4) = { € C: Re(u) < 0};
(b) o(A) C (iR) and the above Cy-semigroup extends to a strongly continuous group of isometries.

Note that Lemma 53 implies that, for a Cy-semigroup of isometries, if d(c(A)) # (iR), then o(A) =
0(c(A)) € (iR), where 9 denotes the boundary of a set. The proof of Theorem 52 is based on the idea

=

used in [31].
Proof of Theorem 52.

Assume that (2.9) does not hold, which means that

@R RIW TR, |
07 i sup™=gey= = msup ™=y = limsup ™= 7. (2.13)

Let us define a following seminorm on X:

I(B) = limsupHT(t) BeX.

t—o0 f(t) ’
It follows from (2.13) that the quotient space X /kerl = {B = B+kerl : B € X} is non-zero. This
space can be equipped with a norm different from the natural one (||B||y := inf{||B|| : B € B}) of the
following form
|B|" :=1(B), BeX.

Note that, since ||T(t)| < |T(t)]] < f(t) (see (2.7) and (2.10)), for all B € X,

I(B) = limsup I7(®)BI

mSup e <[B

holds, which means that || B||’ < ||B||x and the space (X /kerl, ||-||’) may be incomplete. Its completion
w.r.t. the norm ||-||" is denoted by X. Let us define the family of operators f(t), t > 0, by the formula

~

T(t)B=T(t)B+kerl, Be X/kerl C X.
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By applying the property (2.6) for wg = 0, we get

SOBI - 1 IT(¢t + ) Bl f(¢ + )
OB =t e

= |B|’, for B e X/kerl,

Thus, {f(t)}tzo is a family of isometries on X /ker[, w.r.t. the norm ||-||". It is easy to check that for
each t > 0, T(t) extends to an isometry on X and the family {f(t)}tzo is a Cp-semigroup of isometries.
Moreover, one can check that

AB = AB + kerl,

FE o (2.14)
R(A,1)B = R(A, u)B + kerl

for B € X, where A and A are generators of {T(t)}tzo and {f(t)}tzo, respectively and R(A, p)
and R(A\, ) are the respective resolvent operators at the point u. It follows from assumption (a) of

Theorem 52 and (2.11) that

(iR) ¢ o(A) (2.15)

(iR) ¢ o(A).

On the other hand, it is shown in [20] [28] that

~ ~

I(o(A)) N (iR) C o(A) N (iR).
This, along with Lemma 53 (b) and (2.15), implies that
do(A) = o(A) C o(A) N (iR) # (iR). (2.16)

Therefore, again due to Lemma 53, {f(t)}tzo extends to a Cy-group of isometries. Now, since 4 is a

generator of a Cop-group of isometries, its spectrum has to be non-empty (see, e.g., [18])
o(A) £ 0.

By combining the above with (3.10) and (2.11), we obtain:

-~

0+ o(A) C o(A) N (iR) C o(A) N (R). (2.17)

Note that for the case o(A) N (iR) = () we obtain here a contradiction. This means that for the case

of o(A) N (iR) = 0 it holds that

TR,
R R

Now assume o(A4) N (iR) # @. Let us fix A such that

0.

-~

A€ o(A) Co(A)N (R).

It follows from the assumption (a) of the Theorem, (2.17), and (2.11) that there exists a bounded
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curve I'y enclosing A, such that
CyNo(A) =Ty\No(A) =TynNo(A) =0.

Let ﬁl")\ and ﬁl"/\ be the Riesz projections in X and X , respectively, corresponding to the curve I'y.
One can see from (2.14), that for B € X/ kerl

Pr,B = Pr B +kerl. (2.18)

Furthermore, the projections 13pA and IspA split the spaces X and X into direct sums Zl ® Zg and

71 ® Zo, respectively (see Definition 16), so that

7= Pr X,
ZQ = (I — ﬁFA)X,
Z\l = ﬁr‘)\)?,

~

Zy=(I—-Pr)X.

Clearly the spectra of the restricted operators A| z, and A 7, are intersections of o(A) with regions

inside and outside I'y, respectively, with an analogous property for the operator A (see Definition 16).

-~

Now, since the set o(A) is a boundary set, it consists only of approximate eigenvalues (see Lemma 4).

This means that for the chosen A there exists a sequence {Bj, : ||§kH' =1} such that
|AB), — ABy||" — 0 as k — oo. (2.19)
Now, {Ek} can be split into sequences
Be B+ BY,

where

él(cl) € Z\l, El(f) S 22.

Then it follows from (2.19), that

|ABY — ABM | — 0,
IABY = 2B | — o,

as k — oo. Subsequently,
1B — o,

~

since otherwise A would belong to o(A| 22)7 giving a contradiction. In consequence

(1
1B >

[N

for k large enough. Furthermore, by the density of X /kerl in X and by the boundedness of E| z,, the
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sequence E,(Cl) can be chosen from ﬁrx (X /kerl) C Zy. Subsequently, from (2.18), we get
E;il) = ﬁFAEk = ]SI‘AE]g + kerl,

for some sequence By, € X. Then the following estimate holds for large enough k

1~ S~ -~ -~ T(t)Pr, B
L UBOW = 1B Bl = 1By B + erl’ = 1(Pr, By) = tim sup 1L Bell (2.20)
2 t—00 f@)
Now, by integrating the equation (2.12), we obtain
Pp, By, = 55 (A—p) 'Brdu= Q@ Bp(A—p)~'du = BPr,, (2.21)
1N T

where we have used the analicity of the resolvent operator function and the boundedness of By, as an
operator from £(X) to L(X) (treated as a multiplication operator). Using (2.21), and the definition
of T(t)B = BT(t) in (2.20), we get

1 |IT(t)Pr, Bel| .. | Bk P, T(1)]|
— < limsup——~—"2"% = limsup——~~~
g S HmSupT el f(1)
B|ll|lPr, T
ShmsupH k1P, T()|] —0,
t—o0 f(t)

where to evaluate the limit we have used the assumption (2.8). This yields a contradiction, thus (2.13)
cannot hold, i.e.,
TR
o ITOR

O

Remark 54. For bounded Cy-semigroups (||[T(t)|| < M for t > 0) with o(A) N (iR) = 0, by taking

f = M one can easily see that Theorem 52 implies the sufficiency part of Theorem 48.

Remark 55. In the assertion of Theorem 52, one can replace the function f(t) satisfying the conditions

of the Theorem with ||T(t)| whenever
[T ~ f(?)-

Ezamples of such semigroups are given in the next section.

2.3 Application to generators with a countable purely imagi-

nary simple spectrum

Now we will provide some examples of application of Theorem 52 to unbounded semigroups in Hilbert
spaces. The generators of these Cy-semigroups have a countable purely imaginary simple spectrum
such that the eigenvectors form a linearly dense set. Due to the [37] [39], we know that the eigenvalues
cannot be uniformly separated (i.e., inf{|Ay — M| : k,m € N,k # m} > 0) since, for this being the
case, the eigenvectors would form a Riesz basis, which in turn would imply the boundedness of the

semigroup and thus, due to Theorem 48, (2.3) could not hold (since o(A) N (iR) # (). Therefore
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the following examples are unbounded Cp-semigroups (for which the eigenvalues are not uniformly

separated). We begin with a rather simple example, namely

Example 56. Let {e,}>2, be the orthonormal basis of a Hilbert space H. Define the operator A :
D(A) C H— H as follows:

Alg, = A, =

m‘—i—% 1
0 m‘—% ’

where

H, = Span{62n73»e2n72}, n=234...

For each n > 2 consider the curve T',, enclosing the pair of eigenvalues {(ni+ L), (ni — L)}. Then the

image of the Riesz projection corresponding to the curve 'y, is equal H,,. One can directly check that

Since ||T(t)|| = sup || T (t)|, we have
n>2
[T ~ ¢

It is easy to see, that f(t) := t has the desired properties (2.6), (2.7) up to the multiplication by a
constant. Clearly assumptions (a) and (b) of Theorem 52 are satisfied. Therefore (2.3) holds, i.e.,

1T (A

; —0, t— o0. (2.22)

Moreover, for this simple case, we can calculate the decay rate of (2.22), namely

2 _ it 2 _ I
T (A=t = St (n*—1)e (n* —1)nsin - +ine
T -t 0 (n2 4+ 1)e~i% ’

hence
IT(HA™| = sup [T (t) A | ~ 1, t>0.
n>2
Finally, it follows that

IT®AM] 1

—0, t—oo0.
Tol "t >

Now we will give an example of a family of unbounded Cj-semigroups that have a simple countable
purely imaginary spectrum and the eigenvectors are linearly dense but do not form a Riesz basis. This
family was described in [29] [30]. The elements of this family are constructed as follows. Let (H, || - ||)

be a Hilbert space with the orthonormal basis {e,, }22,. For the sequence
An =tlogn, n=23,...
define the Cy-semigroup T' = {T'(t) }+>0 by
T(t)e, = e*re,,
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For a given N € N\ {0} we are able to choose a new norm || - ||y on H, dominated by || - || such that:

(a) The Cy-semigroup T naturally extends to a Co-semigroup T on the completion of (H, || - ||x),
say ﬁNS

(b) there exist constants m, M > 0 such that

mtN <||T@))| < MY +1, t>0. (2.23)

See [29] [30] for a detailed construction and estimations. Denote the generator of T by A. It is shown
in [29] that
o(A) = op(A) = U {ilogn}.

n>2

We are going to show that the Cjy-semigroup T meets the assumptions of Theorem 52, however first

% “by hand” for the case of N = 1. Before we do that we should show some

basic properties of the space Hy, as shown in [29] [30]. Consider the backward difference operator

we will compute

1 0 0
-1 1 0
A= -1 0
0o 0 -1 1

The space Hy is defined as the completion of

[ 03 caens fenkis € b(aM)},
n=2

with respect to the norm on this space defined as:

Jally = ||® i , (2.24)

co N .
- H 3 Z(-l)ﬁcgvcn,jen
n=2j5=0
where lo(AN) = {2 = {¢,}32y,cn € C: ANz € I} and (f) denotes the formal series. The norm
without a subscript denotes the norm in the initial Hilbert space H, and Cfv denote the binomial
coeflicients (JJV ) The action of the generator, resolvent at the point 0 and product of the Cy-semigroup

and the resolvent are as follows:

~ 1

A_l n — n 2a
¢ ilog(n)e -
f 121' L eit log(n) )
t - = >
®) cn ilog(n) o =

_ _ eit log(n)

Cn=—7<€n
— ilog(n)
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Let us consider the simplest case of T when N = 1.

Example 57. Consider T: .F~I1 — ﬁl, then

oo

EE 0

2 N\NZT .~
+|02| ) , T € Hi.
n=2

Cn+1 — Cp,

We will prove that for this case o
HT(j)RMH ~ 1 . (2.25)
1)l log(t)

In further considerations we will use the following inequality for the sequence {c,}32 4

oo

S ‘Cn|2
> - < 43 engr —enl’, e €C, (2.26)
n=1 n=1

which is a special case (see [29] [30]) of the Hardy’s inequality which holds for any non-negative sequence

of real numbers {a,}52 4 :

= P p
Z(nzak) (p—l) ;a"’ an 20

n=1 k=1

for p = 2. To prove (2.25) we will first estimate ||T(t)A~'Z|2 by

~~ o it log(n+1) et log(n) 2
TOAF2 =Y [enti= - 2
IT() A==l oy Cn“ilog(n +1) n ilog(n) + ezl
el log(n+1) et log(n) et log(n) 2
7ZL ! ¢ +1zlog(n+ 1) - ¢ zlog + Z Cnt1 ™ zlog( ) +leal

2
The second and third elements of the r.h.s of the above inequality are clearly bounded by B(log(t)) |z

and C’(log ) |Z||2, B,C >0 fort > e. We only need to look at the first sum then.

eitlog(n+1) eitlog(n) 2

2:: ’C"H ilog(n+1) fnl ilog(n)

0o Crt1 n(eit log(n) log(n + 1) _ elt log(n) log(n)) Cni1 n(eit log(n) log(n) _ et log(n+1) log(n)) 2
5 : \
—ln log(n + 1) log(n) n log(n + 1) log(n)

IA
[\
2 108

Cna1 n(eit log(n) log(n 4 1) _ eitlog(n) log(n)) ’2 N ‘anrl n(eit log(n) log(n) _ gitlog(n+1) log(n)) ‘2
n log(n + 1) log(n) n log(n + 1) log(n)

Cnp1 (1 — et oel+7)) ‘2
n log(n+1)

<QZ

n nlog(1 + 2 >
Cn+1 g( ) ‘ QZ

n log(n + 1)log(n)

The first of the above sums, due to Hardy’s inequality (see (2.26)), is bounded by D|Z||?, and thus by
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2
D(logt t)) |Z||3 fort > e. We estimate the remaining sum by splitting it into two t-dependent sums.

Cnp1 (1 — et oel+7)) ‘2
n log(n+1)

>

n=2
B Z Cni1 TL _ gitlog( (1+1 ) ‘ N Z Crt1 n(l _ ztlog(1+ )) ’2
2<net log(n +1) log(n + 1)
<E Z Cnt1 ‘ ( )2 n Z oy tnlog(l+ 2)(1 — eitlog(1+%)) ’2
Lo log(t) S log(n + 1)tlog(1 + 1)

cn+1(1—-étbﬂl+5’w2( t )2
n tlog(l+2) log(¥)

<E Z c”n“‘ (log())2+FnZZt
= () -

<(E+Q) Z
Where we have used the boundedness of slog(l + %) and

1—se'iS for s € RT. Again due to (2.26), we

obtain
|T(t) A~ Hl(B+C+D+MH4®% (ﬂ”l
Thus
-~ t
THAY < My—— 2.2
1T(t)A™ ] < Olog (@)’ (2.27)

for some My > 0 and t > e. We will now prove the opposite inequality

mo® < [Tt A (2.28)

for some mgy > 0. First, we observe that due to the reverse triangle inequality, it holds that

_ 00 itlog(n+1) eitlog(n) 2 1
T(t)AF], = ( 1 - 2)
IFOA5 = (X o gy~ gy | 1
(i . eitlog(n) log(n) _ eitlog(n+1) log(n)) ’2>%
n+1
o log(n + 1) log(n)
e et log(n+1) elt log(n)

1
2>§

Nian ilog(n + 1) s ilog(n)

<n_2
ztlog(n) 2\ 3
) = leal

(Z) it zlog( )

It follows from previous considerations that

_ o it log(n) log(n) _ eii&log(n—&-l) log(n)) 2y 1
T(H)A'% >(§:n (e () el
|| ( ) le - ~ Cn+1 10g(n—|— 1) log(n) ||Jf||1
for some C > 0. Thus, in order to prove (2.28), it suffices to show that
e itlog(n) __ it log(n+1)) 2 t 2
E o > 2.29
Ll | 2 ) 229
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for some my >0 andt > e. To this end, we construct for each t > e an element in PNI1 in the following

way

W = (f) Z cWe,, jeN, where
n=1

n, ifn < 2t,
Cszt): 4t —n, if 2t < n < 4t,
0, otherwise.
Observe that
|72 < 4t. (2.30)

Now, the following estimate holds (see (2.29))

>

) (eit log(n) __ eit log(n—i—l)) ‘2

n=2 cn+1 log(n + 1)
1— eitlog(1+%)) 2
- Z ‘ log(n + 1) ‘

_ elt log(1+71L))

1
2 ‘ itlog(1+ 1)

t<n<2t

1.2
itlog(1 + *)‘
n

i 1
()Y L) P
= \log(4t) Ea tlog(1+ 1) 2t
( Ct >2 Z 1— eitlog(lJrﬁ)) 2
= | |
log(4t)/ o= | tlog(l+ ;15)
>( ct? )2 D
~ \log(4t) oS
Ct \2t
-D
(log(4t)> 2

fort > e and some C, D > 0 independent of t > e. Combining the above with (2.29) and (2.30) gives

t IT () AZD||,
log(t) = @]

fort > e. Together with (2.27) this shows that

< |T@A < My

ot
“Tog(?) 0

fort > e. This implies, due to (2.23) that

L _IT@ATN 0
“log(t) = |T() ~  ‘log(t)

(2.31)
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for some m{, My > 0 and ¢t > e or, equivalently,

ITOR 1
1T los(®)
Jor t > e and arbitrary p € p(A). Thus
IT() Rl

=~ —0, ast— oo
1@l

O

A similar result can be obtained with the use of Theorem 52. We are going to check that the Cy-
Semigroup T meets the assumptions of Theorem 52 for arbitrary N € N\ {0}. Indeed, for each
An = ilogn one can choose T'), surrounding only one point of U(ﬁ), namely \,. Note also that, for
reHCH,
Az = Az,
R(A, Nz = R(A, M)z,

ﬁpnl' = Ppn{E.
Hence, due to density of H in H

T(t)ﬁrni = eit lognﬁrni’ rTeH.

It is easy to see that the function f(t) = MtN +1 has the properties (2.6), (2.7), and that the following

holds: o _ ~
1T Pr, || _ 1P, Il _ (1P, |l
n S n é n _>0’
f(t) f(t) MtN

This means that the Cy-semigroup meets the assumption (b) of Theorem 52. Application of the pre-

ast—o00, n>0.

sented result yields

TR TR TR
o= 1 JTOR _ o ITOR _ TR
S METEL S Y S ()

for any fixed p € p(A).
O

The application of Theorem 52 rendered much shorter calculations for arbitrary N than calculations

“by hand” for the simplest case of N =1 (even though only the calculation which show that
IT@)A|
1)l
more complicated for larger N.

< Mé@ are relevant in this comparison). One can only expect the calculations to become
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Chapter 3

Delay differential equations of the
neutral type in infinite-dimensional

separable Hilbert spaces

3.1 Introduction

Consider the following delay differential equation of the neutral type in an arbitrary Banach space X:

0 0
2(t)=AZ(t—-1)+ / A2(0)2(t + 0)do + / As3(0)z(t + 6)do, (3.1)
-1 -1
with the initial condition vector function zo(-) belonging to the Sobolev space W1P ([—1,0]; X) (cf.
Definition 44) for some fixed p > 1, and where A is a bounded operator on X and Az 3(-) are strongly
measurable operator-valued functions (see Definition 34) belonging to the space L? ([—1,0]; £L(X)), i.e.,
such that

0
1 1
/1 [ A2,3(0)||7(x)d0 < oo,  where , + i 1. (3.2)

It this chapter we represent the equation (3.1), as first introduced by Burns et al. [7] for the finite-

dimensional case, in a product space as follows

d (y(t)) _ A(y(t)) A( y ) _ (fflA2<9>z(9>d9+f_°1As<9>z<0>d9> (3.3)

dt \ z,(-) () ) dz(0)/do
where z;(-) = z(t + -) and the domain of the operator A is given by
D(A) = {(y.2()) : 2(-) € WHP ([=1,01; X) ,y = 2(0) — Az(=1)} € X x LP ([-1,0]; X).

For the space X equal C" the system (3.3) has been thoroughly analyzed in terms of spectral analysis,
stability and stabilizability in [22-25]. A key tool for stability analysis in the mentioned works is

the existence of a Riesz basis of A-invariant subspaces constructed from the Riesz projections of the
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operator A. As it turns out, such basis of subspaces exists for the more general case of X = H, where
H is an arbitrary separable Hilbert space for a certain class of perturbation integral operators in (3.1),
which is the main result of this chapter (Theorem 74). We note here that, in contrast to the case
of X = C", for the infinite-dimensional case these subspaces are infinite-dimensional as well. We
also note here that, in contrast to [25], we do not analyze the nature of the spectrum, however the
infinite-dimensional case of (3.1) allows for the spectrum of A to be an uncountable set (see Corollary

62), while for the case of X = C™ such case cannot occur.

3.2 Preliminary results

This section contains some preliminary results, including the proof of the generation of a Cy-semigroup
by the operator A. The first lemma, combined with some classical results concerning the characteriza-
tion of Cy-semigroup generators (Theorem 14) will give means to prove that the operator A representing
the system (3.1) via the equation (3.3) generates a Cp-semigroup whenever the system satisfies the

condition (3.2).

Lemma 58. For any initial state

( Y ) € D(A) C X x LP([~1,0]; X),
zo(")

there exists a unique classical solution of (3.3) whenever the system satisfies the condition (3.2) for

an arbitrary Banach space X .

Proof. The idea of the proof is similar as for the case when the space X is equal C", first formulated
by R. Rabah, G.M. Sklyar and A.V. Rezounenko'. To those authors we owe the form of the operator
B and the space Y (3), and the idea of the use of the Banach Fixed Point Theorem. The extension
to an arbitrary Banach space with the system (3.1) satisfying the condition (3.2) is due to this work.

Y D(A
(ZO(,)) e D)

and define the function 2 € W' (-1, 8]; X) in the following way:

First we set an arbitrary initial state

sy = o0 for teFL0) 3.4
© z0(0), for te€]0,p], .

where the parameter S > 0, as for now arbitrary, will be set later. Now consider the function
WHP([=1,8]; X) 3 2(t) = 2(1) +£(t)

where £ € W1P([-1,8]; X) and £(t) = 0 for ¢ € [—1,0]. Using the Banach Fixed Point Theorem we
will find £(¢) in such a way, that z(t) will satisfy (3.3) for ¢ € [—1, §], for some 8 > 0 with z(t) = zo(t)

IThis result cannot be found on-line.
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for t € [~1,0]. Let us now define the closed subspace Y (3) of WP ([-1, 8]; X) as

Y(8) = {5(-) eWW([~1,8;X):€(t)=0 for te [—1,0]}

Note that Y'(53) is a Banach space. Consider the operation B : Y(8) — Y (8)

t {/0 A3(O)(r + 9)d9} dr, for¢eo,pl,

—1

I(t) + /01 As(0)E(t+0)do + /

0

B)(t) = (3-5)

0, forte[-1,0].

where

I(t) A [Zo(t — ]. — ZO / A2 9

/A2 2o d9+/ {/ As(6 T+9)d9}

Note that the vector function I(t) depends only on the initial data. The fixed point of the operator B
yields a solution of z(t) = 2(t) + £(¢), which we are looking for. This can be seen from the following

considerations: Let £(t) € Y(3) be a fixed point of the operator B : Y(5) — Y (8). Then it holds that

-1

t 0
/A2 t+6d9—|—/ {/ A3(9)£(T+9)d9}d7, for t € [0, 8],
0
0, forte[-1,0].

which, after differentiating, gives

0 ) 0

Azg(t —1) + /A2(9)2(t+9)d9+/ As(0)2(t +0)do
-1

/A2 t+0d9+/ Az(0)E(t + 0)de, for t € [0, 8],

0, forte[-1,0].

Due to the form of () (see (3.4)), keeping in mind that Zo(t — 1) = 2(t — 1) for t € [0,] and
Et—1)=E(t—1)=0forte0,4], for B <1, we get

0
AG(t—1) + €t —1) + /_1 As(0)(2 +E)(t +6)do
0

EO+EO =14 [ A30)(2+€)(t+6)dd, for t € [0, 5],
1

20(t), forte[-1,0].

Thus z(t) =

Z(t) +&(¢) is a solution to (3.3) on [0, 8] satisfying the initial condition zo(t) for ¢t € [—1,0]
whenever £(¢) is a fixed point of the operator B.

It remains to find 8 such that the operator B defined on the space Y () is a contraction mapping, i.e.,

1BE() — B&O)I < L6 () = &0l L <1,
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and the existence of the (unique) fixed point will follow from the Banach Fixed Point Theorem. Keeping
in mind that & (t) — &(t) = 0 for ¢t € [—1,0], and using the fact that the norm of a Bochner integral is

less or equal than the integral of the norm of the integrand (see Proposition 31), we proceed by writing

1B(E1)() = B(&2) (w181

_ ’ 0 A(0) (& 52)(.+9)d9+/(.) {/01 Az(0)(&1 — &) (T +0)d 9} dr

(

whr([-1,8;X)
0

’/ A2(0) (&1 — 52)(t+9)d9+/0t {/_1A3(9)(§1 —52)(7"'9)(19} dr '

X
D 1
dt)
X

dt

/A2 € - §2)(t+0d0+{/ As(0)(&r — 52)(t+9)d9}

( ’ dt)i + (/Oﬁ {/0 A5(0)(& —52)(T+0)d9} dr
( / A5(0)(£1 — &) (t + 0)db dt> +( 0 pdt>1
<(] (/ 1420061 — &) t+e||Xde) dt) ( ( IR [ 1o - )+ dofar) at)’

(/ </ 4206 -+, df’) dt) ( (/ PROIGE &)(t+9>|xd0> dt>.

Using the fact that [|As3(0)z| < [|A2,3(0)|zx)llz]x, the Holder’s inequality and the assumption

N
dt)
X

/ Ay(0)(& — &)(t + )0

‘/ Ag(0)(&1 — &)(t + 0)d0

(3.2), we obtain

1B(E1)() = B(&2)()llwr» (=1,

S=

p
1A ooy 16— E)(¢ + ->|Lp([1,o];x>) dt)

X
t P
( [ M5O an a0 1668 = )7 +laagir df) dt)

1
P

1
P

P
42Ol 16 = 06+ uorom ) )
45O r e 166~ &)+ s ) 4¢)
Now, using the fact that for ¢ € [0, §]

1€ = &)+ Me-1,05x) < (61 = &) Ollze-1,8:%)
(&1 = &)E+ )lzr—ronx) < 1€ — &) O)Le-1,8:x)»
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we get

< (ﬁ 1Ol e raneo 1€ — €Ol rs

2\ »
+ (i) 143 ()l eq-1.01e00) 16 = &) Ol ze-1,0:5)
+ <B) } ”AQ(')”LQ([—LO];MX))”(él - SQ)(')”LP([—I,ﬁ];X)
+ (5) ' Az ()l za(—1.01c000 161 = &) (Il Lr((-1.81:%)
< f(ﬁ)”(gl)( ) - (52)(')||W1,p([_175];x),

ie.,

1B(1)(-) = B&)lwre-165x) < FBE)) = (E)Ollwrr-1,81)- (3.6)

The positive function f(8) tends to 0 as 8 tends to 0, hence the operation B : Y(8) — Y (8) is a
contraction mapping for small enough §. This means that there exists a solution of (3.3) on [0, 8].
The existence for all ¢ > 0 follows from the fact, that the contractivity of B does not depend on the
initial data, only on [[A2()|pe(—1,0:2(x)) and |[A3(-)||za((=1,05;c(x))- We can therefore incrementally
extend the solution to the whole Rar (with a step equal 5 for example). This completes the proof of

Lemma 58.
O

From Theorem 14 it follows that in order to prove that the operator A from (3.3) generates a Cp-
semigroup it remains to show that the set p(.A) is non-empty. This will follow from the considerations

below, analogous to the ones presented in [25] for the case where X = C".

Proposition 59. [25] The resolvent of the operator A is given by

" Ae™? /0 e Mp(s)ds + (I — Ae™ )AL (N D4
R(), A) ( ) = i (3.7)
) / MO (s)ds + e’\gA;ll()\)DA
0

and X\ € p(A) if and only if the operator A" (\) € L(X) ewist, where D4 and Aa(\) are defined as
0 0
X3Dy=x+ )\e_AA/ e Y(s)ds — / As(s)(s)ds
-1 -1

0 0
- / {AA2(0) + A3(0)} e {/ e)‘sz,b(s)ds} deé,
-1

0

and

0 0

eASAQ(s)ds—F/ e Az(s)ds.

-1

LX)3A4N) =AM+ e A+ /\/

-1
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Proof. Consider the equation

0 0
(A= ( y ) _ / A2(9)z(t+9)d9+/ As(0)2(t +0)d0 — Az(0) + Az(-1) | _ ( z )
z(") dz(0)/d6 — Az(0)

From the second line we get

This gives ,
20) = AN 2(0) + A / e A5(s)ds + (0).
0

Substitute this in the first line of (3.8) and use

By collecting all the terms with z(0) we get
Aa(N)z(0) = Da,

where D 4 is defined as in the statement of the Proposition. Hence
2(0) = AL (N)Da,

which gives the second line of (3.7). The first line of (3.7) follows from the definition of the domain
D(A), ie., y = 2(0) — Az(—1). To see that the existence of the operator A;'(\) € £(X) is necessary

for X to belong to the set p(.A) one can consider the vector

This completes the proof of Proposition 59.
O

Note that the operator A" ()\) exists for Re()\) large enough. This observation combined with Propo-

sition 59 implies a subsequent corollary.
Corollary 60. The set p(A) is non-empty.

From Theorem 14, Lemma 58, and Corollary 60 we obtain that the operator A in (3.3) generates a

Cy-semigroup.

Theorem 61. For an arbitrary Banach space X and p > 1, the operator A in (3.3) generates a
Co-semigroup in the space X x LP([—1,0]; X) whenever the condition (3.2) is satisfied.
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The main result of this chapter (Theorem 74) relies on showing that the spectral properties of the
operator A4, analogously as for the case X = C" [25], are similar in some sense to the case when
A(-)2,3 = 0, for which the generator is denoted by A. For this particular case Proposition 59 implies
the following.

Corollary 62. For the operator A the resolvent R(\, A) takes the form of

—ZT

R\, A) (1;(7')> | e (/_91 e 4(s)ds + eM(A _);A)—l (/_01 e 1h(s)ds + i)) (3.9)

Note that (3.9) implies \ € o(A) if and only if e € o(A) or A = 0. This yields

o(A) = | {log(e(A)) + 2kmi} U {0}. (3.10)

kEZ

By o(A) we denote the spectrum of the operator A and by log(o(A)) we mean the principal branch
of the logarithm of the set o(A). Further in this chapter we will use a result which holds for the case

when the operator A is invertible.

Corollary 63. For the operator A invertible, the set p(A) contains the half-plane {\ € C: ReX < Ao}
for some Ay < 0.

Proof. Let us rewrite A 4(\) as

A 0 e)\ 0
Aq(N) = > (A —er et / ) e Ay(s)ds + ~ / ) e“A;;(s)ds)
A

:e—/\(A+B()\)),O

where [[B(A)|[z(x) — 0 as Re(A) = —oo. Recall that, due to Proposition 59, A € p(A) if and only if
A;tl(/\) exists. Due to Theorem 45 and the fact that the operator A is invertible, this is the case for
large enough —Re()). If follows that the half-plane {\ € C : Re(\) < Ao} belongs to the set p(A) for

some Ag < 0.
O

From here on we will analyze a special case of (3.1) with the condition (3.2), namely the case when:

p = q =2, and the space X is a separable Hilbert space (denoted by H), and (A1)

log(c(A)) + 2kmi C IntOy, (A2)

Where IntOy, are non-overlapping open sets surrounded by the curves Ly = Lo + 2kmi for some fixed
regular bounded curve Lo surrounding the set log(c(A)) such that log(a(A4)) N Lo = 0.

Note that (A2) implies the invertibility of the operator A. Such operators are a generalization of
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invertible matrix operators that appeared in the case of H = C™ considered in [25]. Note that it

follows from Corollary 62 that
a(A) C U IntOy, U {0}.
kEZ
From here on we will denote the space H x L*([—1,0]; H), similarly as for the case of H = C", as

H x L*([~1,0]; H) = M.

The space M> is equipped with a scalar product given by

<<m>(y)> =uwm+/%wﬂmmmw, (3.11)
v()) "\o)) /) -

which induces a norm on M5 of the form

()

The assumption (A1) yields the space My a Hilbert space, analogously as for the finite-dimensional

1

= (1sti + [ wiorze0) (3.12)

Mo

case [25]. This is due to the fact that it is a product space of two Hilbert spaces (see Definition 33).
We will also put some additional constraints on the operator-valued functions Az 3(0) : H — H, 0 €
[—1, 0], namely that for each 6 € [—1,0] the operator-valued functions in question are Hilbert-Schmidt

operators and their Hilbert-Schmidt norm is square integrable over 6 € [—1,0] (see Theorem 40), i.e.,

/ " (A3.5(0)As.3(0)) 49 < oo (3.13)
-1

Recall now Theorem 40 and Definition 33. It follows that the space consisting of all strongly measurable

operator-valued functions K (-) € L*([—1,0]; Lxs(H)) satisfying
0
/ Tr (K*(6) K (6)) d6 < oo, (3.14)
-1
is a Hilbert space with the scalar product given by
0
(K(),M()) = /1 Tr (M*(0)K(0)) deé. (3.15)

The space Lyg(H) is separable whenever H is separable (see Section 1.4 of Chapter 1), and so is
L*([~1,0]; Lgs(H)), as follows from the considerations in Lemma 64, given below. Also note that it

follows from Proposition 42 that

0 0
/ﬂmw&mws/meﬁm@w, (3.16)

hence
L*([-1,0); Lys(H)) € L*([-1,0]; L(H)). (3.17)
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The property (3.17) allows to consider the operator-valued functions As 3(-) € L? ([~1,0]; Ls(H))
such that the condition (A1) is satisfied, allowing to use ideas and techniques from general Hilbert
space theory and Hilbert space operator theory to both the space M and the operator-valued functions
Az 3(+) that define (3.1). The Hilbert-Schmidt operators are a natural extension of matrix operators

used for the case when H = C" in [22-25] (see section 1.4 in Chapter 1).

Having stated the assumptions taken for the studied system, we proceed with the obtained results. We
begin with a rather intuitive property of generalized Lz[fl, 0] Hilbert spaces. The following technical
lemma shows that there holds a Fourier decomposition property for any function (-) € L*([—1,0]; H).

Lemma 64. Let ¢(-) € L*([~1,0]; H), where H is a separable Hilbert space. Then it holds that

Zerﬂ'z( ) / —2k:‘n'is,(/}(S)ds7 (318)

keZ
O .
/ €72k‘ms’¢(8)d3
-1

Proof. Note first that the space L2([—1, 0]; H) is a Hilbert space with the scalar product given by

and
2

||¢(')”§/2([—1,0];H) = Z (3.19)

keZ H

0

W) SO L2(ronin) = / (6(8), 6(6)) .

—1

Since the space H is separable, any vector function ¢(-) € L?([~1,0]; H) admits the following or-

thonormal decomposition

Z ak,'rLerm(.)hna Z ‘ak,n|2 = Hw(')H%Q([—I,O];HM (320)

keZ,neN keZ,neN

where {h, }nen is an orthonormal basis of H. This follows from the facts, that each simple function
can be approximated by a finite sum of the form as in (3.20) and that simple functions are dense in

L*([~1,0]; H) since L?([~1,0]; H) is a Bochner space. It follows the coefficients oy, ,, are of the form

e = (), €O hy) pa 100

0
2k7rzs
hn)1rds (3.21)

/ e—ka@ ,hn>HdS

1

It follows from (3.20) and (3.21), that

= ey {/ ~2Zkmis( z/J(s),hn>Hds} B (3.22)

kEZ neN
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Now, since {hy, }nen is an orthonormal basis of H, it follows that, for fixed s € [—1, 0], the series

ZW}(S)’ ) thy,

neN
converges to t(s) pointwise, i.e.,
N
J\;im (W(8), hp)hn =(s), forall s € [—1,0]. (3.23)
—00
n=1

Due to the same arguments and the use of the Bessel’s inequality, we get

<||¥(s)||y, forall N eNandse[-1,0]. (3.24)

N
Z<1/’(3)7 h) by,

H

Now, let us rewrite (3.22) as

N—oo 1
kEZ n=

N 0
d;() — Ze2kwi(') lim {/ 672k7ris<w(s), hn>thdS} )
1

By taking into consideration (3.23) and (3.24) and using the Dominated Convergence Theorem for
Bochner integrals (Theorem 32), we can move the summation sign under the integral to obtain
w() _ ZGQkTm(«)/ 6_2k7”s'(/)(8)d5,
-1

kEZ

thus proving (3.18). The equality (3.19) follows from the fact that the set of functions {e2*™()}, s

forms an orthonormal set in the L?([—1, 0], C) space. This completes the proof of Lemma 64.
O

Lemma 64 will be of use several times when proving the existence of a sequence of A-invariant subspaces
which constitute a Riesz basis in the space My for both the perturbed and unperturbed cases. The
existence of a Riesz basis consisting of Riesz projections for the unperturbed case (A(-)2,3 = 0), is
shown in Lemma 69. Before we proceed however, we need to prove a few more lemmas of a technical
nature. Note that by K* we denote the adjoint of the operator K and that in this work by the term

projection operator we mean a projection operator which is bounded.

Lemma 65. Let {Ri}rez be a family of orthogonal projection operators (for which it holds that
Ry =R}, k€Z)on a Hilbert space H. Let {Sk}rez be a family of projection operators such that

> IRk = Skl 2y < 00

kEZ
Then the two families of subspaces {RyH }rez and {SxH }rez are quadratically close (see Definition
23), ie.,

S IR = S %y = Y IRk = SP™ N7 1) < 00,
kEZ kEZ
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Ort
k

where we denote the orthogonal projection onto the space Hy, = SpH by S),"" with an analogous notation

for the orthogonal projection onto the space RiH.

Proof. Note that by assumption it holds that Ry = Rkort. We will show that
IRY™ = SP" ey = 1Bk = S ey < s (3.25)

where Zci < 0o. Keeping in mind that R, = R}, (since each Ry is an orthogonal projection), it holds

kEZ
by assumption that

IRy — Skllzcery = IRE — Sillzceny = |1 R — Skl oy < di, (3.26)

where Zdi < oo. From (3.26) we get
keZ

1Sk = Sillccery < 1Sk — Rell ey + 1Rk — Sgll ey < 2dy (3.27)

where Zdi < 00. Let us decompose S as
keZ

Si = SpSPTt 4 Sp(I — SO, (3.28)

and note that S,SO™ = SO ie., SRS is self-adjoint. Keeping in mind that (I — S¢™) is also

self-adjoint, we get
Sk = (SkSP™)* + (Se(I — SP™)* = (SkSP™) + (I — SP™) S

This yields
Sp — Sp = Si(I — SO — (I — SP™)S;.

Now since, it holds for any = € H,
Si(I - S¢™x € Hy,

and
(I - 52855 € Hy,

due to (3.27), we obtain
1Sk(I = SE™)llF < 1Sk = SP™)alfy + 11— SP™)SiallE = 1(Se — Sk)elfy < 4diellF,

where Zdi < 00. This implies
kezZ
1Sk (I = SP™)|| < 24, (3.29)

Now, using (3.28) and (3.29), we obtain

1Sk = S ey = 1Sk = SkSE™ N eary = 1Sk = SP™) | 2y < 2d,
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where Zdi < 0. Combining the above inequality with (3.26) yields
keZ

IRk — SO ey < 1Rk — Skllecmy + 1Sk — S ey < di + 2dy, = e,

where Zci < o0o. This proves (3.25), thus completing the proof of Lemma 65.
keZ

O

Lemma 66. Let {Rj}rez be a family of mutually orthogonal (R;Ry, = 0 Ri) projection operators
on a Hilbert space H. Then for each k the minimal angle (see Definition 25) between the space RiyH

and the closed linear hull span{R;H, j # k} is positive.

Proof. Let k be fixed, N € N be arbitrary and let

€T = Z OnTn, Tn = Ryyn, yn € H.
[n|<N, n#k

Then, since RjR, = 6; R, we get that € ker R;. Thus, due to the density of the elements of

the form z in span{R;H, j # k} and the boundedness of the operator Ry, the closed linear hull in
question is a subspace of ker Ry,. It follows from the definition of the minimal angle 0 < ¢ < g between
subspaces @A,V

CcOs d)(@,v) = sup |<xay>|a
€@ yeV, ||zl|=[lyll=1

that in order to prove the thesis, it suffices to show that the minimal angle between the subspaces
RiH and ker Ry, is positive. Assume the contrary, i.e., there exists a sequence of pairs (x,,y,) €
Ry H x ker Ry, ||zn|| = ||yn|| = 1, such that

lim [(@n, yn)| = 1. (3.30)

n— oo

(Tny Yn)

[(Zn, Yn)|
the existence of a sequence of pairs (we do not change the notation to maintain clarity) (x,,yn) €

RiH x ker Ry, ||xn|| = ”ynH = 1 such that

Note that by multiplying the scalar product (z,,y,) by we can see that (3.30) implies

lim (2, y,) = 1.

n—oo

It is easy to see that in such a case we obtain

lim <xn —Yn, Ty — yn> = lim ”xn”2 + lim ||yn||2 — lim 2Re<xn7yn> =0.

Thus lim ||z, —yn| = 0 whenever (3.30) holds. This implies, due to the boundedness of the projection
n—oo
operator Ry, that

L= [lzn]l = [[Branll = [ R (zn = yn)l] = 0, as n — oo.

This contradiction shows that (3.30) cannot hold, which ends the proof of Lemma 66.
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O

Remark 67. Note that any family of Riesz projections corresponding to disjoint subsets of the spectrum
(see Definition 16) satisfies the assumptions of Lemma 66. Also note that a family of mutually orthog-
onal projection operators { Ry }rez will remain a family of mutually orthogonal projection operators if

we change the norm to an equivalent one.

The following Lemma shows that the non-zero property of the minimal angle between subspaces of
a Hilbert space is invariant w.r.t. the change to a scalar product is such a way that the new norm
induced by the new scalar product is equivalent to the original norm. This property will be used in

the proof of Theorem 74 at the end of this chapter.

Lemma 68. Let a new scalar product on a given Hilbert space H induce a norm on the space H which
1s equivalent to the norm induced by the original scalar product. If the minimal angle between two
subspaces A,V is positive w.r.t. the original scalar product, than it remains so in w.r.t. the new scalar

product.

Proof. Assume the contrary, i.e, the minimal angle with respect to the original scalar product (-, )y
is positive, while it equals 0 w.r.t. the new scalar product (-,-)3. From the considerations in Lemma
66 it follows the existence of a normed, w.r.t. the new norm || - ||2, sequence of pairs of elements
(TnyYn) € @ x VY such that

|2n — ynll2 = 0, asn — oco.
Consider the normed, w.r.t. the original norm || - |1, sequence of pairs of elements of the form

Tn Yn
Znll1” lynllx

Note that, since the norms are equivalent, it holds that

1 1
= ST S

n>0
C? 7 lznll1llynll ’

1
8727
[znli <C, >0

for some ¢, C > 0. We thus obtain

1 C C
= §|‘{xnl|yn|‘1 = Zn||lznlls + Tal|za |l — ynufn‘ll}Hl < Cﬁl”?/ﬂ‘h — [lzn 1] + g”xn —Ynll1

2C
=l =yl < Dllzn = gallz = 0 as n - 00

To|ynllt = Zallnlli + Tallzallt — yollon s
a1y 1

In Yn
[znlle llynlla

1 1

A

IN

for some D > 0. This implies the existence of a sequence of pairs (Z,,9,) € @ x ¥ of normed w.r.t.

the norm || - ||; elements such that

”i‘n_gn”1—>0, as n — oQ.
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It follows that

xn*ﬂnainfgn 1= ||Zn 1 Z:/n 1 einvgn 1 )
( 1= (|2l + 1l — 2Re( )10

and subsequently,

‘<§:nagn>1| — 1, as n — o0.

Which means that the minimal angle between the subspaces @ and ¥ equals 0 w.r.t the original scalar

product (-,-)1, which contradicts the assumption, thus proving Lemma 68.

Now we will prove the existence of a Riesz basis consisting of Riesz projections for the case of

A(-)2.3 = 0 for which the corresponding operator in (3.3) will be denoted by A.

Lemma 69. Consider the equation (3.3) with A(-)2,3 = 0 and let Ly = Lo + 2kmi be a family of
regular bounded curves surrounding the sets {log(c(A)) + 2kmi}trez (see Corollary 62) such that Lo N
log(c(A)) = 0 and that the bounded subsets Oy of C enclosed by each Ly, are such that IntOxNIntO; = 0
for k # 1. Then the subspaces of My which are the images of the Riesz projections Py, k € Z, of the
operator A associated with the curves Ly, constitute a Riesz basis of A-invariant subspaces of the space
M.

Proof. The existence of such a family of curves Ly, follows from the assumption (A2) on the operator

A. Note that each Ly, due to Corollary 62, is a subset of p(A) and that o(A) C UIntOk U {0}.

keZ
Without the loss of generality we can assume that 0 € Oy. Consider the family of Riesz projections

Py corresponding to the operator A and the curves L. It follows from (3.9) that

_ T 1 _T
Py ( . ) = T omi % Y 0 s N - 0 N . QL
o) Lo+2kmi ¢ (/ L e FY(s)ds +e (A —e) (/ e Y(s)ds + /\))

-1

Due to the Cauchy’s integral formula, the above equation reduces to

00,k
Py <w3(6_)> = 7% yg eAGeA(AeA)Okl </o1 6>\8¢(s)ds+§) N E (3.31)

Lo+2kmi

A

where §p ; denotes the Kronecker delta. After a change of variables of the form p = e”, we obtain

(507]@.2
pk < v > = 7L62k7ri9 ¢ Q(Af )71 /O o~ 2kmis 751,/}(5)d5+ z d » (332)
¥(:) 2mi K a 1 H log(p) + 2kmi a

elo

where the curve e surrounds the set o(A). Using the Dunford calculus for bounded operators (see
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Definition 46 and Theorem 47), from (3.32) we get

507k56

_ x 0
P < ) = | _2k=i6 9/ —2kmis p—s L ke yﬁ gyt
Wb(-) TTIAT | e T AT s)ds = 5 e WA= 1) ey ok

elo

(3.33)

We will now show that the family of subspaces generated by the projection operators of the form

_ x (50,k,’E
= 0
Qk <¢()> - eZkTriOAH/ 6_2k7riSA_Sil)(S)ds (334)
-1

constitutes a Riesz basis of subspaces of the space Ms. Due to Lemma 64 for arbitrary ¢(-) and « one

’;Q’“ < : ) - <A<~)Af<')¢(.)> - (wf.) '

Z 2k7rz(9/ 72k7msA w( )

keZ

obtains

Also, since the sum

is the Fourier expansion of the vector function A*(')w(), it remains so for any permutation k" of the

indices k. It follows that
T
Qpr = (3.35)
2% (w - ) <w<~>>

for any permutation &’ of the indices k and for arbitrary +(-) and z. The application of Theorem 20
yields that the set of subspaces generated by the projection operators {Qy } xez constitutes a Riesz basis
of subspaces of the space My. In order for the set of subspaces generated by the projections { Py }rez to

be a Riesz basis, the subspaces generated by the projections { Py }rcz need to form a complete system.

This can be seen from the following argument. Let (1/;5?
o(-

(w) o <0> - (wi»)

for some 11 (-) € L*([~1,0]; H). Now, due to (3.33) and (3.35), we obtain

27 (m()) 2 (m( )Z (zmo(-))'
(i) 2 () 2 (o) 03

Thus the subspaces { Py Ms}1ez form a complete system.

) € My, then, due to (3.33), we obtain

It follows that
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Now, from (3.33) and (3.34) we get

0
(Ps — Q1) ( v ) = ||| L 2kmio bA—p)t— L )q
() omi AT 2k
v i ?g og{) + 2kmi s (3.37)
CQ 02 T
< () et < () ||<w<~>>|M2’
1 el

on e for some C; > 0 independent of k

where we have used the fact that - <
[log(p) + 2kmi| — |k|+1

and the uniform boundedness of H;ﬁ (A—p)~ ! | on elo x [~1,0]. Now, (3.37) implies that

_ _ 1 2
S = Gl < Y () <= (539
keZ

keZ

Let us introduce a new scalar product (-, -)ar, , on Mo which equips the space with a norm equivalent

to the initial one (cf. (3.11)) by

< (zﬁ?)) ’ (;.)) >M - < <A<fw<~)> ’ (A(zsﬁ(») >M

The norm equivalence comes from the fact that the bounded operator A=) on L?([~1,0]; H) is in-

2

vertible with a bounded inverse A). This can be seen by writing (cf. (3.12))

(o

It follows from the form of subspaces generated by the projections {Qy }rez, which form a complete

2

lall3 + 1A~ OUO) a0

M3 1

set of subspaces (see (3.34)), that with respect to the new scalar product (-, -)as,, these subspaces are
mutually orthogonal and the projections {Qy } ez are orthogonal projections. Since the norm given by
the new scalar product is equivalent to the original norm, it follows from (3.38) and Lemma 65, that
the subspaces generated by the projection operators {P;}rez are quadratically close to a complete
set of orthogonal subspaces generated by {Q}rez w.r.t. the new norm. The fact that the projection
operators { P, }xez generate a Riesz basis of subspaces of the space M equipped with the norm ||-|| Mo
and thus w.r.t. the original norm (since the norms are equivalent, see Theorem 20), follows from the
observation that the set of subspaces {P,Ms}rez is complete, Theorem 24 followed by Remark 26,
and the fact that the minimal angle between the subspace P, M, and the closed linear hull of the rest
of subspaces Py My, (j # k) is positive for each k. The last property is due to Lemma 66 followed by
the Remark 67, and the fact that
B, B, = 6, P

which holds since the operators P, are Riesz projections corresponding to disjoint subsets of the
spectrum of the operator A. The fact that the subspaces { Py Ms}cz are A-invariant follows from the

fact that they are the images of Riesz projections of the operator A. This observation completes the
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proof of Lemma 69.
O

Having proved the existence of a Riesz basis consisting of Riesz projections for the unperturbed case
(A(-)2,3 = 0) we will proceed to some technical lemmas necessary to prove the existence of a Riesz
basis constructed from Riesz projections for the case of a non-zero perturbation. The lemma presented
below can be thought of as a development of Lemma 64. In the notation below we omit the operator
I and write shortly f(s) instead of If(s).

Lemma 70. Let K(-) € L*([~1,0]; Lgs(H)) and Jo be a compact set in C. Then it holds that

/O e K (s)ds

< (k, where Z@Q < oo and Jy = Jgy + 2kmi.
-1

L(H) kEZ

sup
ey

0

Proof. Let us rewrite / e K (s)ds as
-1

0 0o . 4
/e”\sK(s)ds:/ MRS K (5)ds,

—1 —1

where \ € Jy. By the means of integration by parts for Bochner integrals (see Theorem 36) we obtain

0 N .
H/ 6)\562kﬂ'st(S)ds

-1

0 s R N .
= H/ (/ AeMdt + e_’\) RS K (5)ds
L(H) -1 -1 L(H)

0 R ~ 0 ) o s ‘
— H / AeM et / e (t)dt — / e / 2K () dtds
—1 —1 —1

-1
0
<C +/ ds.
L(H) -1 L(H)

The last step is due to boundedness of Ae*® and e~ on the set set Jo X [—1,0], and the fact that

L(H)

0
‘/ e?km’sK(s)dS
-1

/ ezkth(t)dt
-1

(3.39)

the norm of a Bochner integral is less or equal than the integral of the norm of the integrand (see
Proposition 31). Note that C' does not depend on A. Recall now (see Proposition 42) that the Hilbert-

Schmidt norm dominates the operator norm, i.e.,

1K 2y < 1K 2y g - (3.40)

Note that for each s € [—1,0], due to Lemma 64 it holds that

s 0
/ eZkTritK(t)dt _ / er:ﬂ'itK(t) X[0,5] (t)dt € Lys(H),
1 -1

54



where x[o 4 (-) denotes the characteristic function of the interval [0, s]. Hence, for all s € [~1,0]

H/ erm’tK(t)dt
-1

Lys(H)

0 N .
H/ e)\se2k7msK(s)dS

-1

/ 2P R (t)dt

-1

is well-defined. From (3.39) and (3.40) we get
ds).
Lus(H)

0 0
< C’( H/ e K (s)ds —|—/
L(H) -1 Lus(H) -1
(3.41)

Now, since K(-) belongs to the Hilbert space L*([—~1,0]); Lis(H)), the first term on the r.h.s. of the
inequality belongs to [? due to Lemma 64. It remains to estimate the sum of squares of the second

term on the r.h.s. of (3.41). First we observe that, due to the Holder’s inequality, we get

= ) B,

keEZ - kezZ" —

2

/ e2k7ritK(t)dt

-1

/ 2P (1) dt ds. (3.42)
-1 EHS (H)

Notice that the partial sums of the infinite sum on the r.h.s. of (3.42) are non-decreasing for all
s € [-1,0]. Due to the Monotone Convergence Theorem we can move the summation under the

integral, thus getting

(/)

keZ

2
ds
Lus(H)

/ 2P K (t)dt

-1

2

0 s

ds) < / > / 2RI E () dt
Lys(H) - -1

Lkez

0
2
:[1 HK(')X[OaS](')HL?([—LO];EHS(H)) ds,

where the last step is again due to Lemma 64. Now, for all s € [—1,0], it holds that

2 2
HK(')X[Ovs](')Hm([fl,o];[;HS(H)) < HK(')||L2([—1,0];£HS(H))7

which gives us

(/)

2
0
2
ds) < [ KO oy
kez Lus(H) -1

S
/ eZkTritK(t)dt

-1

2
= 1K)z (m1,0) 20 (7)) < -
The last inequality follows from the assumption on the operator-valued function K (-) € L*([~1,0]; Lgs(H)).
This completes the proof of Lemma 70.
O

The following lemma will show that the spectrum of the perturbed operator A is in some sense similar

to the spectrum of the unperturbed operator A.

Lemma 71. Let Ly = Lo+2kni be a family of regular bounded curves surrounding the sets {log(o(A))+
2kmi}rez such that LoNlog(a(A)) = 0 (see Corollary 62) and that the bounded subsets Oy, of C enclosed
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by each Ly, are such that IntOx NIntO; = () for k # 1. Let the operator-valued functions Ag 3(+) in (3.3)
that define the operator A belong to the space L*([—1,0]; Luys(H)). Then there exists N € Ny and a
bounded set B C C, such that o(A) C B |_| IntOy,.
|[k|>N

Proof. The existence of such a family of curves Ly, follows from the assumption (A2) on the operator A.
Note that, due to the Hille-Yosida Theorem (Theorem 15) and the fact that the operator A generates
a Cp-semigroup (Theorem 61), its spectrum is contained in the half-plane {\ € C : Re(\) < Ay} for
some A\; € R. This observation, combined with Corollary 62 shows that the spectrum of the operator
A lies in the vertical strip A = {A € C: \g < Re(A) < A1} for some Mg, \; € R. Now let M}, be the
rectangle AN{\ € C: 2kr < ImA < 2(k+ )7} and let Ny = M}, \ IntO,. Due to Corollary 62,
the compact sets Ny, are subsets of the set p(A) for [k| > 1. For A € N let us write A = \ + 2kni,
where A € Np. It follows from Proposition 59, that the operator A}l (A + 2kmi) € L(H) exists for
A+ 2kmi € N for all A € Ny and k € Z\ {0}. Let us fix A € Ny and write

AN+ 2k G U EY S {0}
TN+ 2%mi) = (A= M) ke 0.
al ) )\+2km‘< ) \

Since the set Ny is compact, the continuous functions ||(A — e;\+2k”i)_1|| and |65‘+2k”| are uniformly
bounded over k and \. It follows that
L N HA;{(X + 2kmi) < & (3.43)
|A + 2k LOH) | A+ 2kmi]

where C7 and C3 do not depend on k. Now, due to Lemma 70, we get
A 4(\+2kmi) = Aa(A+ 2|
H A(A + 2kmi) A(A+ 2kmi) o
~ 0 N . 0 N .
= H ()\ + 2km') / eM2kTis Ay (5)ds + / MRS A5 (s5)ds

-1 —1

< | A+ 2kl
£(H)

where ¢, — 0 as |k| — oo and ¢ does not depend on the choice of X € Ny. Hence, due to (3.43),

—1

A 4(A+ 2kmi) — A (A + 2kmi < ||az G+ 2k
|46+ 2bmi) — dah - 2km|| | < [aF A 2hma)|

for all A € Ny and |k| large enough. Due to Theorem 45 for every A € Ny and |k| > N, N independent
of the choice of A, the operator A;l(j\ + 2kmi) exists on Nj. This means (cf. Proposition 59) that,

for |k| > N, the sets N}, are subsets of the set p(.A). This implies that o(A) C U My, |_| IntOy,
k|<N-1  |K[>N
which completes the proof of Lemma 71.

3.3 Main result

Here we prove (Theorem 74) the existence of a Riesz basis of the space Ms constructed from A-

invariant subspaces for the system (3.3) satisfying assumptions (A1) and (A2) and such that that
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the operator-valued functions As 3(-) in (3.3) belong to the space L*([~1,0]; Lxs(H)). We are thus
extending the result from [25] concerning the existence of a Riesz basis of subspaces constructed from
Riesz projections to the infinite-dimensional case. An example of an infinite-dimensional space and
system for which this results can be applied is given after the proof of Theorem 74. Next lemma will

allow us to show that

k|2>:N [P — Pk”i(Mz) < 00,

for some N € Ny, where P, and P, denote the Riesz projections corresponding to the curve Ly for
the operators A and A, respectively. The lemma estimates the norm of the difference of resolvents of
the operators A and A on each L, for |k| large enough by a non-negative sequence belonging to 1?(Z).

The idea of using this estimation first appeared in [25].

Lemma 72. Let Ly be a family of curves as in Lemmas 69 and 71. Let the operator-valued functions
As3(+) in (3.3) that define the operator A belong to the space L*([—1,0]; Lys(H)). Then, for some
N € Ny and |k| > N, the following estimate holds:

sup HR(A, A) — R(/_l,)\)HL(MZ) <7k, where Z T2 < oo.
ACL D

Proof. Due to Lemma 71, the curves Lj, are subsets of the set p(A) N p(A) for sufficiently large |k|.
From the form of the resolvent (3.7) of the operators A and A it follows that

] z (1= Ae™) {AZ (N D4~ Af(A)DA})
R(A,\) — R(A,\ = ’
[R(A,X) — R(A,N)] <w(.)> < M IAZ (N DA — AT (N D4}

A
where 0 0
H>Dy=z+ /\e_AA/ e *Y(s)ds — / As(s)(s)ds
-1 -1
0 6
- / {A\A2(0) + A3(0)} e {/ e’\sw(s)ds} dé,
-1 0
0
H>Dj=x+ /\e‘AA/ e Y(s)ds,
-1
and
0 0
LH) 3A4N) = =M+ Xe A+ ) / e Ay(s)ds + / e As(s)ds, (3.44)
-1 -1
L(H)3A1(\) = =M+ Ae A, (3.45)

Since ||(I — Ae=*)|| and e*? are bounded uniformly over k on Lj x [—1,0], the estimation

(o)

, where Z Y2 < 00 (3.46)

sup [[{AL (N Da = A7 WDl <
o M, [k|>N
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for some N € Ny and |k| > N is sufficient to prove Lemma 72. Let us rewrite the difference
{A;tl ()\)DA — A}l(A)DA}

as

(AL DA A NDg} = [AF N - AZ W] Da— AN [Da-Dg.  (347)

(o)

Recall that the operator A z(A) is invertible if and only if A ¢ U {log(c(A)) + 2kmi} U {0}, hence for
kez

We will first show, that

/\seu%)k H[A;‘l()\) — A:il()\)]DAHH < e

, Z er? < 00. (3.48)

M; [k|>N

A€ Ly, for all k € Z we can write

Due to the fact that ||(A — e*)7!|| and e* are bounded uniformly over k on each Ly, we get

Cl —1 CQ
Y = ||AA ()\)HL(H) < AP (3.49)

where C7 and C3 do not depend on k. Now, due to Lemma 70, we get

0 0
18400 = AW Loy = HA [ anoass [ daas]  sodn
-1 -1 L(H)
for A € Ly, where ¢, — 0 as |k| — co. Hence, due to (3.49),
_ -1
18400 = AWl < 135 Wl (3.50)

holds for |k| large enough. Due to Theorem 45, (3.49), and the fact that ¢, — 0 as |k| — oo, for large
enough |k| the operator A'()) exists for A € Ly, and it holds that

_ _ AT M e Cs
1AL ) = AL Wl < A <=
A AV =1 A W eaner —

From the above considerations and (3.49) we get an estimate of ||A;‘1 ()\)HE(H)

_ - _ _ Cy+C3  C
(A3 N ey < IAF N oy +IAT X = AL W oy < =57 = 13 (3:51)

for some Ny € N and all |k| > No.

Now notice that for the bounded operators K € L£(H) and L € L£(H) such that K~ € £(H) and
(K + L)~ € L(H), it holds that

K*' (K+L)'=(K+L) LK,
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which is easy to check by multiplying the above equation by K from the right and by K + L from the
left. It follows from this consideration, for A € Ly and |k| large enough, that

-1

0 0
(A- e)‘)_l - (A —eM e’\/ e Ay (s)ds + e /
-1

—1

0 0
= (A -+ e>‘/ e Ay(s)ds + e 71 / e)‘SAg(s)ds>
~1 —1

0 0
X (e)‘ / e* Ay (s)ds + e / e/\SA;;(s)ds) (A— e/\)_l .
—1 —1

e’\SAg(s)ds>

-1

A

Multiplying the above equality by .

3 (see (3.44), (3.45)), gives

AT ) = AL O gy = HA;@(A) (eA /_01 e Ay(s)ds + M1 /_ 01 e’\SA3(s)ds) [A—e]

K(H).

Due to (3.51), Lemma 70, and the fact that || (4 — 6>‘)71 | cczry and € are bounded uniformly over &

on each Ly, we get

d
AL N - A;{(A)HE(H) < ﬁ for A€ Lg, k> No, Y di” < oc. (3.52)
|k|>No
Now we will obtain the following estimate
1 T
— | Dally <C , for A € Ly, |[k| > Ny € N, (3.53)
A VO,

which, combined with (3.52), will imply

sup H[A;‘l (\) — A

N D, <
el A N -AHH > Ck

s Z€k2<00

Mo [k|>N

(o)

for some N € N and |k| > N. To obtain (3.53), we proceed by writing

1 x
— Dy = e A “Asyh(s)ds — / Ao
AT N / vlsdds =y ) A

IAI/ {A2 o)+ A3(9)} m{/o ASw(s)ds}de.
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The first term on the r.h.s. is clearly bounded by Cj . As for the second term, we get

(o)

/O e Y (s)ds

-1

Mo

<C

I
H

0
—ef)‘A/ e MY (s)ds
N AT

" (3.55)

)

Mo

0
<c / e (9) s < O IO g < O

(o)

where we have used the uniform boundedness of e=** on Lj, x [—1,0] over all k& and Holder’s inequality.

For the third term in (3.54) we get

H; /_ 01 As(s)¥(s)ds

1 0
<5 / A25) oy 16(5) 3 s
; }

(o)

where the second to last step is again due to Holder’s inequality and the assumption that As(-) €
L*([~1,0]; Lys(H)) € L*([~1,0]; L(H)). As for the last term in (3.54), the following estimate is

sufficient
i " M 967/\8 s)ds *
B /71 As(0) {/0 Y(s)d }d¢9 <¢()>H . (3.56)
Mo

We proceed by writing
A [0 0 0
W/ er Ay (6) /e_’\sw(s)ds dé er Ay (6) /e‘Asw(s)ds
—1 0 0
0 0
a0 < [ A0y [ 0] o

0 0
< [ 1Ay | [ e out1s
—1 0 H

(o)

where we have used the uniform boundedness of e™** and e** on Ly, x [—1,0] for all k, the assumption
that Ay(-) € L*([~1,0]; Lugs(H)) € L*([~1,0]; £L(H)) and applied the Hélder’s inequality. Combining

the above estimates gives (3.53), i.e.,

)

Mo

< Co W)l g2 1,01 < C2

< Cs
H

do
H

0
</
—1

H

)

Mo

< Cs [0 L2 ((1.0p:) < Cs

1

D <C
|)\| || -AHH —

<x>H . A€ Ly |k >N eN.
UM

()]

This, along with (3.52), gives

sup [[[AZ'(N) — AL (V)] Dall, <ex

. |k|> N, €2 < 0o 3.57
Sup |K| Z k (3.57)

M, [k|>N
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for some N € Ny. From (3.47) we see that in order to prove Lemma 72, it remains to show that

' AZYN) [Da— Dl <
j;lfkﬂ 2N [Da—-Dalll, < fr

|k|>N

. , 2 ¢ . 3.58
(w-))H% 2 g )

Let us rewrite A;Tl (A) [Da — D] in its full form, i.e.,

AL (A [Da— Dy
A /0 0 6 (3.59)
= (A—e?) ! </ 1 Az (s)(s)ds — /1 {AA2(0) + A3(0)} M {/ e’\sw(s)ds} d0> .

0

-1
For the first term on the r.h.s., due to the uniform over £ boundedness of (A — eA) and e on each

Ly, we obtain

et 1 [0 0
T [ antepioas| < G L 1A e 106 s

(3.60)
c

0 2
< 5 (] 142y a5) 10O r -

Where the last step was due to Holder’s inequality. Taking into account that for all A € Ly, one has

1 1
= & ———,
Al = 2|k - C

with C' independent of k and combining (3.60) with the assumption As(-) € L2([~1,0]; Lys(H)) C
L*([~1,0]; L(H)), we get
()

As of the estimation of the remaining terms on the r.h.s. of (3.59), it is sufficient to show that
e 1| [ 0
Y (A- e)‘) / A (0)er / e *Y(s)ds p df
-1 0
¥()
First we note, due to the uniform (over k) boundedness of (A — e”\)_l and e on each Ly, that the
9 [0 0
5% (A- e’\) / A ()er / e My (s)ds p db
-1 0
0 9
/ Ay ()M / e i(s)ds p df
-1 0

er

0
Y (A- e)‘)_1 /_1 As(s)(s)ds

< fik . NEL, Y fip <o (3.61)

M, keZ

H

" (3.62)

< fok L NELLY f3y < oo

M, keZ

following holds

H (3.63)
<cC

H
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From (3.63), we proceed with

/01 Ay ()M {/09 e)‘sqp(s)ds} dg = — /01 Az () {/90 6)‘51/1(5)d5} dg

0

=— [ Ay(0)eM {/O e M (s)ds — /0 eksw(s)ds}da (3.64)

-1

_ /_01 Ay (0)e?dn /_01 ey (s)ds + /_01 Ay (0)eM {/_“’1 e_ASw(s)ds} a0,

We estimate the first term in the last line of (3.64) using the uniform (over k) boundedness of e~** on

Ly x [—1,0], Holder’s inequality, and Lemma 70, to obtain
0 0

”/ Ag(s)e)‘sds/ e h(s)ds
—1 -1

(o)

As of the remaining term in the last line of (3.64), by using the integration by parts (see Theorem 36),

/_O As () {/j e—*sw(s)ds} de

< for I9() lL2(=1,01, 1)

(3.65)
S.fik ) >\€Lka Zfé?k < 0.

M keZ

we obtain

' (3.66)
0 0 0 0
= / Ag(s)e’\sds/ e Ma(s)ds — / {/ AQ(S)@ASdS} e (0)de.
-1 -1 -1 -1
Due to (3.65), we only need to estimate the norm of
0 0
/ {/ Az(s)e)‘sds} e~y (6)d6.
-1 (/1
We proceed with
0 0 0 0
/ {/ AQ(S)(ZASdS} e My(h)do|| < / {/ Ag(s)e)‘sds} e My(0)|| de
—1 —1 H —1 —1 H
(3.67)

|e=*(0)]|,, db.
L(H)

= /01 {/91 AQ(S)G)\SdS}

Due to the uniform boundedness of e™** on L x [—1,0] for all k and application of the Hélder’s

inequality, from (3.67) we get

H/_Ol {/_91 Ag(s)e/\sds} e My (0)db

) 3
do | V)l pz(-1,0,m) -
L(H)

H<c(/_°l

{/_91 Ag(s)e’\sds}
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By using similar arguments as in the proof of Lemma 70, we get

H/_ol {/_61 AQ(S)G)\SdS} e y(0)do

< F2e 1O L2 100,80

H (3.68)
< 1 ( ’ >| e Y <o
v,
By combining (3.68) with (3.66), (3.65),(3.63) and (3.61) we get the inequality
_ x
sup HAjl()\)[DA_DA]HHka < )H ) Zf,3<oo.
AELy w() Mo kezZ
The above implies (3.58), i.e.,
_ x
sup HAAI()\)[DA—DA}HHgfk ( )H , |k| > N, Zf,f<oo,
ALy v() M, |k|>N
which, combined with (3.57), proves (3.46) and thus Lemma 72.
O

Remark 73. Note that, due to technical reasons, the number N obtained in the above considerations
1s somewhat artificial. It follows from the form of the assertion of Lemma 72 that this number can be

chosen as the smallest number N € Ny for which Ly, C p(A) for |k| > N.

Theorem 74, which is the main result of this chapter, uses Lemma 72 and Theorem 24 to show that
for system (3.3) satisfying the assumptions (A1) and (A2) and such that the operator-valued functions
Az 3(+) in (3.3) belong to the space L*([—1,0]; Lxs(H)), there exists a Riesz basis of the space My

constructed from A-invariant subspaces, which are the images of Riesz projections of the operator A.

Theorem 74. Let Ly = Lo + 2kmi be a family of reqular bounded curves surrounding the sets
{log(c(A)) + 2kmi}rez (see Corollary 62) such that Lo Nlog(c(A)) = 0, and that the bounded sets
Oy enclosed by each Ly have non-overlapping interiors (IntOy N IntO; = @ for k # 1). Assume
that the operator-valued functions As3(-) in (3.3) that define the operator A belong to the space
L*([-1,0); Lys(H)). Then there exists N € Ny, such that for |k| > N, L, C p(A) and the subspaces

of Ms which are the images of the Riesz projections Py of the operator A associated with the curves

1
Ly, together with the image of the orthogonal projection P, to the subspace span{PyMs, |k| > N} |

constitute a Riesz basis of subspaces of the space Ms.

Proof. First note that such a family Lj exists by the assumption (A2) on the operator A. Due to
Lemma and 72, for P, as in Lemma 69, it holds for some N € Ny for |k| > N, that Ly C p(A) N p(A)
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and

1P = Pl o,y = yﬁR(A, N-RAND| < 75 |R(AX) = RN g0, 14
k L£(Ms) L (3.69)
|Lk‘ sup HR(A7>‘) - R(-"L /\)||£(]V[2) < |L0|7k7
AELy

IN

where Z vkz < 00, and |Lg| denotes the length of the curve Ly. For {Qk}kez as in Lemma 69 and
[k| >N
|k| > N, we get

HQk - Pk||z:(M2) S HQk - pkHL(Mz) + HPk - Pk||z:(M2) : (3.70)

Due to (3.38) and (3.69), it follows

k|2>:N 1@k — Pk|\i(M2) < . (3.71)

Let us now introduce a new scalar product (-,-)ns,, on My which equips the space M, with a norm

equivalent to the initial one (cf. (3.11)) by

< (J») | <¢g<j~>> >M - < (A*fw(-)) | (A‘fw-)) >M

The norm equivalence comes from the fact that the bounded operator A=) on L?([-1,0]; H) is in-

2

vertible with a bounded inverse A®). This can be seen by writing (cf. (3.12))

(o)

It follows from the form of subspaces {Q}, Mz }rez, which form a complete set of subspaces (see (3.34)),

2

= llzl1F + AU (-1,0m0)-
Ms

that with respect to this new scalar product these subspaces are mutually orthogonal and the projec-

tions {Qy }rez are orthogonal.

Now, let @0 = Z Qr, 150 = P,. For k > 0 denote @k = Qk+(N_1) and 13k = Pyy(n—1), and for
_ |k|<N _
k < 0 denote Qk = Qkf(Nfl) and Pk = Pkf(Nfl)- From (371) we obtain

2

Sla-a <w 872

L(M.
e (Ma,1)

Observe that subspaces {@kMg}keZ form an orthogonal base of subspaces for the space Ms endowed

with the new norm. Now, since for any = € Ms it holds that

x=Pyx+ (I-P,)zx,

and the subspaces {Py M3}, >y are complete in (I — Po)Mz = span{P;Ma, [k| = N}, the set of
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subspaces {ISkMg}k . forms a complete set of subspaces in My w.r.t. both the || - [|5s,, norm and
the original norm. Aelso, for each k, the minimal angle between the subspace JSkMQ and the closed
linear hull of the rest of subspaces ﬁng, (j # k) is positive w.r.t the new norm. This holds due to
the application of Lemma 66 followed by Remark 67, Lemma 68 and the observation

0=P;P, = P,P;, foralll|kl,[j|>N,j#Fk,
) j ||, 14 (373)

P, L span{P;M,, |k| > N},

which is true since the operators Py, |k| > N, are Riesz projections that correspond to disjoint parts

of the spectrum and due to the definition of P,,

Since the norm given by the new scalar product (-,-)ar, , is equivalent to the original norm, it follows
from (3.72) and Lemma 65 that the subspaces generated by the projection operators {ﬁk}kez are
quadratically close to a complete set of orthogonal subspaces generated by {@k}kez w.r.t. the new
norm. The fact that the projection operators {ﬁk}kez generate a Riesz basis of subspaces of the
space My equipped with the norm || - ||az,,, and thus w.r.t. the original norm (since the norms
are equivalent, see Theorem 20), follows from the observation that the set of subspaces {ﬁkMg}kEZ is
complete, Theorem 24 followed by Remark 26, and the fact that, for each k, the minimal angle between
the subspace }BkMg and the closed linear hull of the rest of subspaces ]Bng, (j # k) is positive (see
(3.73)).

Note that, for |k| > 1 the subspaces ISkMg, being the images of Riesz projections of the opearator A,

are A-invariant (see Definition 16).
O
We end this chapter by providing an example of a Hilbert space for which our results may be applicable.

Remark 75. Consider as the space H the space L? [0, 1], which is a separable Hilbert space, and the
delay equation of neutral type of the form

0 1 0 1
i(s,1) :A:;:(s,t_1)+/l/0 kg(s,u,ﬂ)é(u,t+9)dud9+/1/0 s(5, 10, 0)2(u, £ + 0)dudd,  (3.74)

where z(s,t) € L*[0,1] for all t > 0 and A is a bounded invertible operator on L?[0,1] satisfying the
assumption (A2) (e.g., (Af())(s) = f(s) +/ f(u)du)? and the integral kernels are such that
0

1ol
/ / |ka.3(s,u,0))* duds < oo
o Jo

0 1 g1
/ / / |ka.3(s,u,0)|” dudsdd < oo,
—-1Jo Jo

which renders the integral operators defined by the kernels ko 3(s,u,0) Hilbert-Schmidt operators such

for all 6 € [-1,0], and

that their Hilbert-Schmidt norm is square-integrable over 6 € [—1,0] (see Section 1.4.1 in Chapter 1).

e
2Recall that for the Volterra operator (V f(-))(s) = / f(u)du, o(V) is equal to the singleton set {0}.
0
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Then for the system (3.74) the corresponding Co-semigroup generator is of the form:

0 1 -
Arz2)01) ( Y ) _ /_1/0 kz(S,u,Q)Z(uﬁ)dudG—i—/_l/o k3(s,u,0)z(u, 8)dudd ’
) d=(0)/d0

where the domain of the operator Az 1) is given by
D(Arz2p,17) = {(y,2(-)) : 2(-) € H' ([-1,0]; L*[0,1]) , y = 2(0)—Az(—1)} C L*[0,1]x L? ([-1,0]; L*[0,1]) .

Due to Theorem 7} for this system there exists a Riesz basis of the space My r2(9,1) constructed from

Arz2(0,1)-invariant subspaces of the form as in Theorem 7.
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